
A DIRECTIONAL TOTAL VARIATION

İlker Bayram

Electronics and Telecommunication Eng. Dept.
Istanbul Technical University

ibayram@itu.edu.tr

Mustafa E. Kamasak

Computer Eng. Dept.
Istanbul Technical University

kamasak@itu.edu.tr

ABSTRACT
Total variation (TV) is an isotropic image prior that penal-
izes the abrupt changes in the images in all directions. In this
paper, we modify TV so as to make it more suitable for im-
ages with a dominant direction. Specifically, we describe the
implementation of a directional TV, and we demonstrate its
utility for image denoising. We show that image denoising
with the directional TV prior can be more effective compared
to the regular (isotropic) TV for images with a dominant di-
rection.

Index Terms— total variation, directional total variation,
image denoising

1. INTRODUCTION

Total variation (TV) penalizes abrupt changes in images. It is
a very effective signal prior for piecewise smooth images as
in Fig. 1a. However, TV is an isotropic functional and is not
very suitable for images with a dominant direction, like the
one in Fig. 1b. For such images, one could, in principle, scale
the image in order to reduce the dominance of the direction.
However, for discrete-space images, scaling requires interpo-
lation and therefore it is not very feasible. In this paper, we
describe a different approach to define a directional TV. We
also study a related denoising problem for discrete-space im-
ages and provide an algorithm for its solution.

The total variation (TV) of a discrete-space image f is
defined as,

TV(f) =
∑
i,j

√(
∆1f(i, j)

)2
+
(
∆2f(i, j)

)2
(1)

where ∆1 and ∆2 denote horizontal and vertical difference
operators, (possibly) defined as,

∆1 f(i, j) = f(i, j)− f(i− 1, j), (2)
∆2 f(i, j) = f(i, j)− f(i, j − 1). (3)

We can rewrite this as,

TV(f) =
∑
i,j

‖∆f(i, j)‖2 =
∑
i,j

sup
t∈B2

〈∆f(i, j), t〉 (4)

(a) (b)

Fig. 1. Total variation is a simple and effective prior for piece-
wise smooth images as in (a). We describe a directional total
variation for images with a dominant direction as in (b).

where ∆ is the linear operator defined as,

∆f(i, j) =

(
∆1 f(i, j)
∆2 f(i, j)

)
(5)

and B2 is the unit ball of the `2 norm. Henceforth, we use
∆ to denote the matrix that represents the linear mapping de-
fined in (5).

Total variation is isotropic because it is invariant under
a rotation of the image (or, equivalently, the components of
∆ f ). This is a consequence of the `2 norm (or B2) appearing
in (4). We can obtain a directional total variation by replacing
B2 with some other set. In particular, if we use an ellipse,
Eα,θ oriented along the angle θ, with a unit length minor axis
and a major axis of length α > 1, (see Fig.2), the resulting
norm

TVα,θ(f) =
∑
i,j

sup
t∈Eα,θ

〈∆f(i, j), t〉 (6)

is more sensitive to variations along θ.
Given this new total variation, we would like to have al-

gorithms that use this pseudo-norm as a regularizer. In this
paper, we study the denoising problem,

f∗ = argmin
f

1

2
‖y − f‖22 + λTVα,θ(f), (7)
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Fig. 2. The ellipse Eα,θ used to define the directional TV
norm.

where y is the given noisy image. Specifically, we derive an
algorithm that solves this problem and apply it to images to
demonstrate its utility.

TV3,θ

Fig. 3. The directional TV norm of the image in Fig. 1b as a
function of θ. Here, α is set to 3. The function has a minimum
around π/2, indicating a dominant vertical appearance.

1.1. Previous Work

Total variation was proposed to be used as an objective func-
tion for denoising by Rudin, Osher and Fatemi in [1]. They
also describe a method, based on a PDE that solves the pro-
posed optimization problem. Chambolle, in [2], characterizes
the solution of the isotropic version of (7) using a certain pro-
jection (essentially deriving Prop. 1) and devises an algorithm
to realize the projection. Beck and Teboulle [3] derive a sim-
ilar algorithm and show how it can be further accelerated by
using information from different iterates. Esedoğlu and Osher
[4] define other general directional total variations by using
shapes other than the B2 ball in (4). They study the proper-
ties of the minimizers of the resulting denoising problem (7),
however, they do not propose algorithms similar to the one
described in this paper.

2. THE DIRECTIONAL TV DENOISING PROBLEM

2.1. Characterizing the Solution of the Problem

In order to characterize the solution to (7), let us define a vec-
tor field with two components as

v(i, j) =

(
v1(i, j)
v2(i, j)

)
. (8)

Using v(i, j), we can now write

TVα,θ(f) = sup
v(i,j)∈Eα,θ

〈∆ f, v〉 (9)

The following characterization can be found in [2, 4].

Proposition 1. For

v∗ = argmin
v(i,j)∈Eα,θ

∥∥y − λ∆T v
∥∥2

2
, (10)

set Py = λ∆T v∗. Then, y − Py minimizes (7).

The problem is essentially equivalent to a projection. Let
us now make a few definitions and transform the problem.
Define the rotation and scaling matrices Rθ, Λα as,

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, Λα =

[
α 0
0 1

]
. (11)

Using these, Eα,θ and B2 are related as Eα,θ = Rθ ΛαB2.
Let us now define the operators Rθ, Λα, that act on the vector
fields as,(
Rθ v

)
(i, j) = Rθ

(
v(i, j)

)
,
(
Λα v

)
(i, j) = Λα

(
v(i, j)

)
.

(12)
We remark that RT

θ = R−θ, ΛT
α = Λα. These facilitate the

computation of TVα,θ as,

TVα,θ(f) = sup
v(i,j)∈Rθ Λα B2

〈∆ f, v〉 (13)

= sup
v(i,j)∈B2

〈∆ f,Rθ Λα v〉 (14)

= sup
v(i,j)∈B2

〈Λα R−θ∆ f, v〉. (15)

Hence, we have

Corollary 1. For

v∗ = argmin
v(i,j)∈B2

∥∥y − λ∆T Rθ Λα v
∥∥2

2
, (16)

set Py = λ∆T Rθ Λα v
∗. Then, y − Py minimizes (7).

This problem is also equivalent to a projection. However,
this time the projections involve disks rather than ellipses. Al-
though one can devise an algorithm based on projection onto
ellipses (see for instance [5, 6]), we think that the algorithm
described below, which makes use of projections onto disks,
is simpler.
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Description of the Algorithm
For simplicity, we take λ = 1 without loss of generality.

Our goal is to minimize the function

C(v) = ‖y −Av‖22 (17)

where A = ∆T Rθ Λα, subject to v(i, j) ∈ B2 for all (i, j).
Suppose now that we have v(k) at the kth iteration. We would
like to find v(k+1) where each component v(k+1)(i, j) be-
longs to B2, such that C

(
v(k+1)

)
≤ C

(
v(k)

)
. Suppose that ρ

is a constant for which ρ I −∆ ∆T is positive semi-definite.
Then, it follows that, (α2ρ) I − AT A will also be positive
semi-definite. It can be shown, by a majorization argument
[7], that for

C(k)
(
v
)

=

∥∥∥∥[v(k) +
1

2α2 ρ
AT
(
y −Av(k)

)]
︸ ︷︷ ︸

ṽ(k)

−v
∥∥∥∥2

2

, (18)

if C(k)
(
v
)
< C(k)

(
v(k)

)
for some v, then we also have

C
(
v
)
< C

(
v(k)

)
. Therefore, we might as well consider

reducing the function C(k) at the kth iteration, subject to
v(i, j) ∈ B2. Notice that C(k)(v) is separable with respect to
the indices. The minimizer, subject to v(i, j) ∈ B2, is given
by,

v∗(i, j) = ṽ(k)(i, j)
1

max
{
‖ṽ(k)(i, j)‖2, 1

} . (19)

Algorithm 1 provides the pseudo-code for the general
case, with arbitrary λ, α, θ parameters to obtain f∗ in (7).

Algorithm 1 Directional TV Denoising
Input:λ, y, α, θ from (7)
Output:f∗ as in (7)

Require: ρ, a constant s.t. ρ I −∆ ∆T is psd.

vn(i, j)← 0 for n = 1, 2
κ← 1/(2 ρα2 λ2)
A← λ∆T Rθ Λα

for iter = 1 to MaxIter do
ṽ ← v(k) + κAT

(
y −Av(k)

)
for all (i, j) pairs do
v(i, j)← ṽ(k)(i, j) 1

max
{
‖ṽ(k)(i,j)‖2,1

}
end for

end for
f∗ ← y −Av

Remark 1. A similar algorithm may be derived using the
frameworks presented in [8, 9].

3. EXPERIMENTS

To demonstrate the utility of the proposed directional total
variation, we present three experiments. All images used in

the experiments are grayscale and their intensity value are
normalized so that their pixel intensities have values between
[0,1]. Independent identically distributed (iid) Gaussian noise
is added to the images to obtain the noisy observations. The
noise is zero mean and spatially uncorrelated. The noise has
different standard deviations (σ) for the experiments, which
are mentioned below. For each experiment, the amount of TV
prior (λ) for both regular and directional TV is optimized for
minimum RMSE.

Experiment 1. Gaussian noise with σ=0.1 is added to the di-
rectional texture image shown in Fig. 4a to obtain the noisy
‘observation’ shown in Fig. 4b (RMSE = 0.1009). For α = 1
(this corresponds to regular TV), the denoised image is shown
in Fig. 4c, where RMSE = 0.0489. For α = 5, θ = π/2, (di-
rectional TV), the denoised image is shown in Fig. 4d, where
the RMSE = 0.0429. We observe that directional TV performs
better for this image, both in terms of RMSE and visual ap-
pearance.

(a) (b)

(c) (d)

Fig. 4. Texture image (a) Clean Image (b) Noisy Ob-
servation (RMSE=0.1009) (c) Denoised with a TV prior
(RMSE=0.0489) (d) Denoised with a directional TV prior
(RMSE=0.0429).

Experiment 2. Gaussian noise with σ = 0.1 is added to
the spaghetti image shown in Fig. 5a. The obtained noisy
image is shown in Fig. 5b (RMSE = 0.1009). The noisy
image is denoised using both regular and directional TV
priors. The result of the image denoising using TV prior
is shown in Fig. 5(c) with RMSE=0.0431. Denoised image
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with directional TV prior is shown in shown in Fig. 5(d) with
RMSE=0.0269. The parameters used in the directional TV
prior are α = 5 and θ = π/4.

(a) (b)

(c) (d)

Fig. 5. Spaghetti image (a) Clean Image (b) Noisy Ob-
servation (RMSE=0.1002) (c) Denoised with a TV prior
(RMSE=0.0431) (d) Denoised with a directional TV prior
(RMSE=0.0269).

Fig. 6. RMSE values for denoised spaghetti images obtained
with directional TV with different α and θ parameters.

We also investigated the effects of the {α, θ} parameters
of the directional TV in terms of their performance for de-
noising. Fig. 6 depicts the RMSE curves for different α val-
ues as a function of θ. For the direction parameter θ, we see
that for all values of α, the smallest RMSE value is obtained
around θ = π/4, which is roughly the dominant direction in
the spaghetti image. For the parameter α, we observe that
small values cannot achieve good denoising. On the other
hand, high values of α lead to high RMSE when the TV prior
direction (θ) is deviates from the correct value. Therefore, for
α, one can talk about a trade-off between denoising perfor-
mance and dependency on the prior direction information. To
that end, for the spaghetti image shown in Fig. 5(a), the value

α = 5 appears to be a good choice, since it can effectively
remove noise is sufficiently prone to deviations from the true
θ.

Experiment 3. A final experiment is performed in order to
compare the denoising performance of directional TV prior
with regular TV. For this purpose, zero mean Gaussian noise
with different σ values is added to the pipe image that is
shown in the first row of Fig. 7. Four different noise levels
at σ = {0.1, 0.15, 0.2, 0.25} are used. Each column in Fig. 7
corresponds to one of the noise levels, whose σ values are
given at the bottom of each column in the figure. The noisy
observations of the different noise levels are shown in the sec-
ond row of Fig. 7. In this figure, the denoised images using
TV prior are shown in the third row, and the denoised images
using directional TV prior are shown in the last row.

Fig. 8. RMSE values for the denoised pipe image for different
noise levels.

The (best) RMSE values for the denoised images using
TV and directional TV priors are shown in Fig. 8 at different
noise levels. We see that, as the noise level increases, de-
noising with directional TV prior outperforms the regular TV.
Since denoising in the presence of high noise depends more
heavily on the prior, this implies that the directional TV is
a more suitable prior for this image, despite the existence of
structures whose directions differ from the dominant direc-
tion.

4. CONCLUSION

We described a modification to the regular TV so as to make it
more sensitive to a certain direction. As a sample application,
we used the directional TV as a prior in an image denoising
problem. We demonstrated that for images with a dominant
direction, the directional TV is a more suitable prior than reg-
ular TV. We also discussed the effects of the parameters in the
introduced directional TV.
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(a) σ = 0.1 (b) σ = 0.15 (c) σ = 0.2 (d) σ = 0.25

Fig. 7. Pipe image denoised using TV and directional TV for different values of the noise level (σ). First and second rows show
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