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ABSTRACT 
 
In texture classification, feature extraction can be made in a 
transform domain. A possibility to preserve the translation 
invariance is to use a complex transform like the 
Hyperanalytic Wavelet transform. It exhibits a circularly 
symmetric density function for subband coefficients so it 
can be modeled by a particular form of the complex 
generalized Gaussian (CGGD) distribution function. The 
Kullback-Leibler (KL) divergence, or distance, can be used 
to measure the similarity between subbands density 
function. We derive in this paper a closed-form expression 
for the KL divergence between two complex generalized 
Gaussian distributions.  
 

Index Terms— Kullback-Leibler distance, divergence, 
Complex Generalized Gaussian Distribution 
 

1. INTRODUCTION 
 
In probability and information theory, the Kullback–Leibler 
(KL) divergence is a non-symmetric measure of the 
difference between two probability density functions (pdf), 
p and q. This is defined as [1]: 

 
,

, log
,KL

p x y
D p q p x y dxdy

q x y∫ ∫  (1) 

If the two pdfs are the same (p=q), the divergence is null. 
The KL distance is used as a similarity measure between 
textures, which makes it useful for texture classification [2]. 
In [2], the authors deal with computation of KL divergence 
for statistics of real wavelet subband coefficients. A wavelet 
subband is modeled using the generalized Gaussian 
distribution (GGD). Based on this model, hyperparameters 
of the coefficients pdf from each subband are estimated. 
The KL divergence is computed between the pdf of 
subbands for two compared textures.   

If this classification is made using a complex wavelet 
transform, we need a complex model and the closed-form 
for the KL divergence.  

The generalization for the GGD model in the complex 
case was proposed by Novey and Adali which approximates 

the pdf based on a histogram [3]. The computation problem 
for the distance between two pdf for complex variables was 
also discussed by Verdoolaege [4]. He established equations 
for geodesics in probability space. Unfortunately, these 
relations are not usable at this moment.  

Because the hyperanalytic wavelet transform (HWT) 
produces complex coefficients with a circular distribution 
we have studied the simpler problem of KL divergence for 
such distributions [5]. We derive in this paper a closed-form 
for the KL divergence of pairs of CGGD random variables 
and we study its sensitivity with the shape parameter.  

The paper has the following structure. In section 2 we 
give the definition of HWT and its main statistical 
properties. Section 3 briefly presents the CGGD [3] and we 
explain why we chose this model for HWT. Section 4 
presents the closed-form of the KL divergence of two 
CGGD. The sensitivity of this KL divergence with the 
parameters of the CGGDs is analyzed as well. Conclusions 
are presented in the last section. 
 

2. HWT TRANSFORM 
 
In [5] a new complex wavelet transform was proposed, 
based on the hypercomplex mother wavelet a ,x y  
associated to a real mother wavelet ,x y : 

 
a , , ,

, ,

x

y x y

x y x y i x y

j x y k x y

H

H H H
 (2) 

where  2 2 2 1,  and i j k ij ji k  [6], Hx is the 
Hilbert transform computed across rows and Hy across 
columns. The HWT of the image ,f x y  is:  

 , , , , .aHWT f x y f x y x y  (3) 
This is computed using the 2D discrete wavelet transform 
(2D-DWT) of its associated hypercomplex image, fa : 

 , ,HWT f x y DWT f x ya  (4) 

where fa  is defined as 

 a , , ,xf x y f x y i f x yH   
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, ,y x yj f x y k f x yH H H  

This means that HWT uses four trees, implemented by 2D-
DWT, being adequate to a multi-wavelet environment [5]. 
The HWT identifies six orientations, 3 positive and 3 
negative, ±atan(1/2), ± /4 and ±atan(2): 
 R Iz z jz   (5) 
A problem of interest is the statistical modeling of the HWT 
coefficients. For input random processes, random variables 
as Z, can be associated to the HWT coefficients  z.  

The coefficients have zero mean, the cross-correlation 
between their real and imaginary parts is zero and the 
variances of their real and imaginary parts are estimated to 
be the same, 2 2 2 / 2R I , for any second order 
stationary bivariate input random process [7]. Therefore, we 
considered the repartitions of the random variables Z± 
corresponding to the HWT coefficients z  to be like 
circularly symmetric. The cross-correlation matrix is:  

 
2

2

/ 2 0

0 / 2

⎡ ⎤
⎢ ⎥
⎣ ⎦

T
b b bEC Z Z  (6) 

where Zb=[ZR ,ZI]T is the bivariate vector of the real and 
imaginary parts of the HWT coefficients. The augmented 
form: Za=[Z , Z*]T [3] can also be used. 
 

3. CGGD 
 
For a complex generalized Gaussian distribution, CGGD, 
where the bivariate random vector is bZ  and the augmented 
vector is aZ  [3], the general form of the bivariate 
covariance matrix is:  

 
2

2
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C Z Z  (7) 

where R IE Z Z   is the cross-correlation between the 
real and imaginary part. The augmented covariance matrix 
is established by Novey and Adali as: 
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The probability density function generalizes the GGD 
family of densities,  

 ; , exp
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where ( )i  is the gamma function,  is the scale 
parameter, and c is the shape parameter. The generalized 
probability density function for the augmented vector is [3]: 

 1exp H
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c
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c
. In [3] a Matlab program is presented 

which gives the ML estimation for the vector 
2 2, , ,

T

R I c⎡ ⎤⎣ ⎦ . This means we can have the ML 

estimation for the shape parameter c and the matrices bC   
and  aC . We show in the following the importance of the 
quality of this estimation. 
 
4. KULLBACK-LEIBLER DIVERGENCE FOR CGGD 
 
In the case of circular vectors, with 2 2 2 / 2R I   and 

0 , which corresponds to the HWT coefficients of any 
bivariate stationary random process [7], starting from the 
augmented pdf in (10), the bivariate pdf is:  
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 (11) 

For the pdf having the shape parameters c1, c2 and the 
variances 2 2

1 2  using relationship (11) and the definition 
in (1) we obtain the Kullback-Leibler distance: 

 

1 2
1 2

2 1

1 1 2 2

1 2 1 2 1 1

2

2

2

2

2

2
1 2

2
2 1 1

2 / 1 / 1
ln

2 / 1/

1 2 / 1/ 1

1/ 1/ 2 /

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

KL

c

D
c c c

p p
c c c c

c c c

c c c c c

 (12) 

The proof of this relation can be found in Appendix.  
We plot the KL distance between p1 and p2, for 1 2  . In 
Fig.1, the shape parameter for p2, that is c2, is fixed, with 
values 0.3, 0.5, 1, 1.5 and 2. The shape parameter for p1, 
that is c1, varies from 0.2 to 2. In Fig.2, the shape parameter 
for p1, c1 is fixed, with values 0.3, 0.5, 1, 1.5 and 2. The 
shape parameter for p2, that is c2, varies from 0.2 to 2.  

It is essential for any classification that the distance 
between the two pdf to be as discriminant as possible. In 
other words, if c1 and c2 are very close then KL should be 
close to zero, and if they have different values, this distance 
should be as high as possible.  

It can be observed, analyzing Fig. 1 and Fig. 2 that the 
KL becomes zero if c1=c2 and σ1=σ2. These parameters are 
not a priori known in textures classification applications and 
they must be estimated. The success of the classification 
depends on the quality of the estimators used. For an 
efficient classification, it is necessary that the speed of 
variation of the curves in Fig. 1 and Fig. 2 around their 
intersections with the line expressed by the equation DKL=0, 
to be as high as possible. 
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Fig. 1. KL distance between p1 and p2 ( 1 2 ). The shape parameter for p2, c2 is fixed, with values 0.3, 0.5, 1, 1.5 and 2. 

The shape parameter for p1, that is c1, varies from 0.2 to 2.
 

 
Fig. 2. KL distance between p1 and p2 ( 1 2 ). The shape parameter for p1, c1 is fixed, with values 0.3, 0.5, 1, 1.5 and 2. 

The shape parameter for p2, that is c2, varies from 0.2 to 2.  
 
 

For the VisTex database [8], using 40 images subdivided 
in 16 subimages each, resulting in 640 smaller images, we 
have repeated the estimation of the shape parameter c and of 
the covariance matrix Ca, using the programs presented in 
[3]. This was done in the HWT domain, using one 

decomposition level and Daubechies-3 mother wavelet. We 
have noticed that the shape parameter varies in the range 
0.1÷5 but its values around 0.5 appear more frequently. 

From Fig.1 it is easily noticeable that the KL distance 
varies only slightly for values of c1 between 0.8 and 1.2. It 
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is interesting that it responds better around the value 
c1=0.25. The KL distance is more sensitive for the plot 
c2=0.3 than for Gaussian case (c2=1).  

For Fig.2, where we plotted KL distance with c1 fixed, 
the best case is for c1=0.3, as opposed to the case of c1=1 
(Gaussian case). The KL distance varies only slightly for 
example in the range c2 of 0.5÷1.5. As expected, the KL 
distance is non-symmetric with respect to c1 and c2. 

 
5. CONCLUSIONS 

 
In texture classification, when using a complex transform 

such as the HWT, modeled by the CGGD distribution, the 
KL distance can be used to measure the similarity between 
subband density functions. This is not always satisfactory 
because there are intervals where KL distance varies only 
slightly despite the fact that the two pdfs are very different. 
It would be useful in the future to study more measures for 
texture classification.  
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APPENDIX 
 

We compute the KL distance for the CGGD model, in 
the circular case. The probability density function is:  
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where x and y are the real and imaginary components, and 
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We compare two pdf: 
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and 
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We start from the KL distance definition: 
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First we have: 
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The integrand is then: 

 
1

2 2
1

1 1 2
2 1

2 2 2 2
1

2 2
2 1 2

1

2

ln exp

ln

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

c

c c

p x y
p A

p B

A x y x y
A B B

 (A.7) 

The KL distance can be written as a sum of three terms, I1, 
I2 and I3: 
 1 2 1 2 3KLD p p I I I  (A.8) 

The first term is: 
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Because:  
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we obtain:  
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In the same manner, we have: 
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and 
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The distance becomes: 
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where: 
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It results that: 
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We took into account that: 
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We verify that the distance is correct, for 

2 21 1;        c c c  
it should be zero: 
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