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ABSTRACT 
 
The discrete fractional Fourier transform (DFRFT) whose 
order parameter is a rational number has special interesting 
properties that ordinary DFRFT does not possess. In this 
paper, periodicity and eigendecomposition properties of the 
rational-ordered DFRFT (RODFRFT) are investigated. We 
find that RODFRFT must be periodic and periods of 
RODFRFT are derived for all possible orders. As to the 
eigendecomposition of RODFRFT, we first derive 
eigenvalue multiplicities of the RODFRFT of order 4/p, 
where p is its period. The results are then generalized to 
RODFRFT of any rational orders. 
 

Index Terms—Fractional Fourier transform, discrete 
fractional Fourier transform, DFT, Hermite-Gaussian 
function, eigenvalue multiplicity 
 

1. INTRODUCTION  

The discrete fractional Fourier transform (DFRFT) is the 
generalization of the DFT with one additional real 
parameter [1]-[2]. An eigendecomposition-based DFRFT 
whose output can approximate samples of the continuous 
fractional Fourier transform (FRT) has been defined [1]-[2]. 
The continuous FRT is useful in signal processing and 
optics [3]. In [1], Pei and Yeh compute eigenvectors of the 
DFRFT by those of the Dickinson-Steiglitz DFT-
commuting matrix [4]. Eigenvectors of the Dickinson-
Steiglitz DFT-commuting matrix are discrete Hermite-
Gaussian functions (HGF) [1]-[2]. This is one of the main 
reasons  that the DFRFT output is similar to the FRT [1]. In 
order to define DFRFTs closer to the FRT, several DFT-
commuting matrices with even finer discrete HGF DFT 
eigenvectors have been proposed [5]-[8]. 

Discrete transforms frequently used in signal 
processing have multiple eigenvalues, e.g. DFT, DCT, DST, 
etc. Therefore, it is important to understand eigenvalue 
multiplicities of discrete transforms. Eigenvalue 
multiplicities are useful to fractionalize discrete transforms. 
To define DFRFT, eigenvalue multiplicities of the DFT, 
discovered by McClellan and Parks [9], are used in [1]. 

Eigenvalue multiplicities for DCT and DST are derived for 
defining their corresponding fractional transforms [10]. 

An N×N discrete transform T is defined to be periodic 
with period p (a positive integer) if  

 IT =p , (1) 
where I is the identity matrix. Periodic transform has special 
properties [6]. For example,  

)1(1221 −−−−− ++++= pp MTTMTTTMTMA L  (2) 
is a commuting matrix of T (i.e., TA=AT), where M is an 
arbitrary N×N matrix [6]. Eigenvectors of T can then be 
computed from those of its commuting matrix A [6]. 

The N×N DFT matrix F is defined as 
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Let the eigendecomposition of the DFT F be 
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where ek, k=0, 1, …, (N-1), are an orthonormal eigenvector 
basis and kλ  are eigenvalues of  F. It is known that F has 
only 4 distinct eigenvalues {1, -j, -1, j} and their 
multiplicities are given in TABLE I [9]. The N×N DFRFT 

aF  with one order parameter a is defined by [1]-[2]: 
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TABLE I  EIGENVALUE MULTIPLICITIES OF THE N×N DFT F 

 
2. PERIODICITY OF THE RODFRFT  

Generally, the DFRFT aF  is not periodic. Let r and s be 
two coprime integers, i.e., (r, s)=1. The N×N RODFRFT is 
the DFRFT whose order parameter is a rational number, i.e., 

rsa /=  in (5).The resulting RODFRFT rs /F  has a special 

λ 04
2 ⋅− πje 14

2 ⋅− πje  24
2 ⋅− πje  34

2 ⋅− πje
N=4m m+1 m m m-1 
N=4m+1 m+1 m m m 
N=4m+2 m+1 m m+1 m 
N=4m+3 m+1 m+1 m+1 m 

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 2124



property that it is periodic. Peridicity of rs /F   can be 
derived from the fact that F4=I as follows: 
1) When s is odd: rs /F  is periodic with period p=4r, since 
4r the smallest positive integer power of rs /F  that is equal 
to I. This can be seen by ΙFF == srrs 44/ )( . 

2) When s=2b with b being an odd integer: rs /F  is periodic 
with period p=2r, since ΙFF == brrs 42/ )( . 

3) When s=4b with b being any integer: rs /F  is periodic 
with period p=r, since ΙFF == brrs 4/ )( . 

We conclude that the period p of the RODFRFT rs /F  
is: 
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Let the period of rs /F  be p as given by (6). Then the 
eigenvalues of rs /F  must be pth roots of unity. 

Property 1: The eigenvalues λ of rs /F  must satisfy 
 1=pλ . (7) 

 
3. EIGENDECOMPOSITION OF THE RODFRFT 

In this section, we will discuss the eigendecomposition of 
the RODFRFT which can approximate samples of its 
corresponding rational-ordered FRT. We will first derive 
eigenvalue multiplicities of p/4F . The result will then be 
generalized to DFRFT of arbitrary rational orders rs /F . 

3.1. DFRFT approximating the continuous FRT 
It is known that the following N×N DFRFT definition with 
fractional order a can approximate its corresponding 
continuous FRT [1]-[2]: 
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where hk, k=0,1,2,…, are orthonormal and are kth-order 
discrete Hermite-Gaussian function (HGF) DFT 
eigenvectors with k zero-crossings. There are several 
methods that can be used to compute hk from various DFT 
commuting matrices in the literature [4]-[8]. Note that the 
definition of aF  in (8) has different forms for odd N and 
even N because [1]-[2]: 
1) When N is odd: The orders (zero-crossings) of the 
discrete HGF DFT eigenvectors of aF  are 0, 1, 2, …, (N-1). 
2) When N is even: The largest order of the discrete HGF 
DFT eigenvectors of aF  is N, instead of (N-1) for the above 
DFRFT with odd N. Consequently, the orders of the discrete 
HGF DFT eigenvectors of N×N aF  with even N are 0, 1, 
2, …, (N-2), N. 
 

TABLE II  EIGENVALUES AND CORRESPONDING DISCRETE HGF DFT 
EIGENVECTORS OF F4/P 

 
 
 
 
 
 
 
 
TABLE III  EIGENVALUES AND CORRESPONDING DISCRETE HGF DFT 

EIGENVECTORS OF 16×16 RODFRFT F4/6 

 
TABLE IV  EIGENVALUE MULTIPLICITIES OF N×N F4/6 

 
TABLE V  EIGENVALUE MULTIPLICITIES OF N×N F4/3 

 
 
 
 
 
 
 
 
3.2. Eigendecomposition of p/4F  
We will first discuss eigendecomposition of the RODFRFT 

p/4F  which approximates its corresponding FRT: 
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Property 2: If k=q (mod p), then the discrete HGF DFT 
eigenvector hk in (9) is the eigenvector of p/4F  with 
corresponding eigenvalue )exp( 2 qj p ⋅− π . 

Proof: From (9), hk is the eigenvector of p/4F . The 
corresponding eigenvalue of hk is: 
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From Property 2 and (9), we can collect eigenvectors 
with the same eigenvalues and rewrite (9) as: 
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where the upper bound in inner summation with index n is 
equal to the largest n value such that np+q is an element of 
{0, 1, 2, …, (N-1)} if N is odd or {0, 1, 2, …, (N-2), N } if 
N is even.  

From (6), the period of p/4F  is p and p/4F  has p 
distinct eigenvalues. Consequently, from (10), eigenvalues 
and their corresponding discrete HGF DFT eigenvectors are 
conceptually shown in TABLE II. As an example, 
eigenvalues and eigenvectors of 16×16 RODFRFT 6/4F  
can be obtained as in TABLE III. In TABLE III, we should 
note that there is a jump in the largest and second largest 
orders of the HGF DFT eigenvectors since its N is even. 
The HGF DFT eigenvectors of the largest order of 16×16 

6/4F  is 16h  and its corresponding eigenvalue is 

))6mod16(exp( 6
2 ⋅− πj . We can generalize this example 

and use TABLE II to derive eigenvalue multiplicities of 
N×N p/4F  as follows: 
1) If p is even: We first observe that there are four cases of 
eigenvalue multiplicities for the DFT F in TABLE I, since F 
has 4 distinct eigenvalues. Similarly, because p/4F  has p 
distinct eigenvalues, we need to consider p cases of N to 
derive eigenvalue multiplicities of p/4F . These p cases are 
for N=pm, pm+1, pm+2, …, pm+(p-1). For each case, the 
eigenvalue multiplicities can be obtained by first finishing 
the DFT HGF eigenvectors table in TABLE II and then the 
eigenvalue multiplicities are equal to their corresponding 
numbers of different DFT HGF eigenvectors. For example, 
from TABLE III, the eigenvalues of 16×16 6/4F  are 
{ )0exp( 6

2 ⋅− πj , )1exp( 6
2 ⋅− πj , …, )5exp( 6

2 ⋅− πj } and 

their corresponding multiplicities are {3,3,3,2,3,2}. The 
complete eigenvalue multiplicities table of N×N 6/4F  is 
shown in TABLE IV. It is easy to generalize TABLE IV for 
N×N 6/4F  to the general case for N×N p/4F . To avoid the 
unnecessary complexity, the details are omitted. It is 
interesting that the eigenvalue multiplicities of the DFT F in 
TABLE I can also be obtained by the method for this case. 
2) If p is odd: For this case, to derive eigenvalue 
multiplicities of N×N p/4F , it should be noted that we 
cannot simply consider only the p cases of N=pm, pm+1, 
pm+2, …, pm+(p-1), because for odd p the even or odd 
property of N=pm, pm+1, pm+2, …, pm+(p-1) is ambiguous 
and TABLE III for this case cannot be constructed. 
However, if we consider instead the 2p cases N=2pm, 
2pm+1, 2pm+2, …, 2pm+(2p-1), then the corresponding 

table of N×N p/4F  can be constructed for each N and its 
eigenvalue multiplicities can be derived using the previous 
method described. As an example, eigenvalue multiplicities 
of N×N 3/4F  are given in TABLE V.  

After understanding eigenvalue multiplicities for the 
RODFRFT p/4F , we will discuss eigendecomposition 
property for the general RODFRFT rs /F  as follows. 
 
3.3. Eigendecomposition of rs /F  
Similar to discussing periodicity of rs /F , there are three 
cases for eigenvalue multiplicities of rs /F : 
1) When s is odd: From (10), we have 
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where p≡4r is the period of rs /F  and (p,s)=(4r,s)=1. 
Comparing (11) and (10), we can see that the eigenvalue 
multiplicities table of rs /F  is the same as that of 

pr /4)4/(4 FF ≡ , but with corresponding eigenvalues of 
)exp( 2 qj p

π− , q=0, 1, 2, …, (p-1), for p/4F  being replaced 

by )exp( 2 qsj p
π− ,q=0, 1, 2, …, (p-1), for rs /F . Since p and 

s are coprime, the result is that eigenvalues of rs /F  are 
appropriate permutations of eigenvalues of p/4F . For 
example, since 2/3F = 8/12F = 38/4 )(F , if we want to 

construct eigenvalue multiplicities table of N×N 2/3F , we 
can first construct the eigenvalue multiplicity table of N×N 

8/4F  using the method described in Subsection 3.2 and 
then map the resulting eigenvalues )exp( 8

2 qj π− , q=0, 1, 

2, …, 7, of 8/4F  to eigenvalues )3exp( 8
2 ⋅− qj π , q=0, 1, 

2, …, 7, of 2/3F  to get the eigenvalue multiplicity table of 
38/4 )(F = 2/3F . The resulting eigenvalue multiplicities 

tables for N×N 8/4F  and 2/3F  are given in TABLE VI. 
2) When s=2b with b being odd: For this case, 
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where p≡2r is the period of rs /F . One should note that in 
(12), (2r,s/2)=(p,s/2)=1. As a consequence, for this case, the 
eigenvalue multiplicities table of rs /F  is the same as that of 

r2/4F ≡ p/4F , but with the eigenvalues being appropriately 
permuted. For example, since 5/6F = 10/12F = 310/4 )(F , the 

eigenvalue multiplicity table of N×N 5/6F  and 10/4F  are 
the same, but with the eigenvalues )exp( 10

2 qj π− , q=0, 1, 

2, …, 9, for 10/4F  being replaced by their corresponding 
powers of 3 (that is, )3exp( 10

2 ⋅− qj π , q=0, 1, 2, …, 9) for 

eigenvalues of 5/6F . 
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TABLE VI  EIGENVALUE MULTIPLICITIES OF N×N F4/8 AND F3/2 
 
 
 
 
 
 
 
 
 
 
 
 
3) When s=4b: For this case, 
 4//4/ )( srrs FF = , (13) 

where (r,s/4)=1. In (13), r≡p is the period of rs /F . 
Therefore, in this case, the eigenvalue multiplicities table of 

rs /F  is the same as that for pr /4/4 FF ≡ , but with 
eigenvalues of rs /F  being powers of s/4 for those of r/4F . 
For example, since 5/16F = 45/4 )(F , the eigenvalue 

multiplicities table of 5/16F  is the same as that of 5/4F , but 
with eigenvalues )exp( 5

2 qj π− , q=0, 1, 2, 3, 4, for 5/4F  

being respectively replaced by )4exp( 5
2 ⋅− qj π , q=0, 1, 2, 3, 

4, for eigenvalues of 5/16F . 
 

4. CONCLUSION 
We find that the RODFRFTs rs /F  are periodic for all 
integers r and s. All of the periods of rs /F  are derived from 
the fact that the DFT matrix F is of period 4. From 
eigendecomposition of rs /F which approximates its 
corresponding continuous FRT, eigenvalue multiplicities of 
N×N p/4F  with p being the period is first derived for both 
cases of even and odd p. Eigenvalue multiplicities of 
general rs /F  are then derived from p/4F  according to three 
cases of periods for ./ rsF  It is known that the RODFRFT 
can be applied as an alternative method to compute the 
DFRFT of any irrational orders [11]. Except for periodicity 
and eigendecomposition properties of the RODFRFT, we 
believe that there should be other special properties and 
applications of the RODFRFT which are valuable for 
further researches. 
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