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ABSTRACT 

 

Knowledge about the distance of moving objects can be 

used to enhance the performance of object detection, 

tracking and classification schemes. However, such 

information is usually not known a priori. We present an 

unsupervised method to approximate basic scene geometry 

properties such as the camera pose in single-view video 

sequences. At present, the method is working in constraint 

environments such as traffic surveillance. The proposed 

approach is solely based on the motion information present 

in H.264 encoded, compressed video streams and does not 

rely on object tracking results. We start by constructing 

motion maps from compressed domain motion vectors. 

These maps are used to estimate the orientation angle of the 

camera, which allows to add a depth measure in the form of 

equidistant lines to the image plane. 

 

Index Terms— H.264, Compressed domain, Camera 

pose estimation, Scene geometry 

 

1. INTRODUCTION 
 

Numerous computer vision tasks like object detection, 

tracking, scene segmentation and behavior analysis can 

benefit from information about the scene and its basic 

geometry. Perspective projection obscures the relationships 

that are present in the actual scene. Perspective plays an 

important role not only because it affects the size of the 

object's projection on the image plane, but also for the 

estimation of its speed for example. Approximate 

knowledge of the 3D scene geometry can provide very 

useful information during analysis tasks. 

Another aspect that plays an increasingly important role in 

computer vision is the consideration of context. Although 

sophisticated object detectors, classifiers and scene 

segmentation schemes exist, such tasks still remain 

challenging research problems. Information about the 

context can deliver useful information to enhance detection 

results. The presented approach is inspired by Hoiem et al. 

[1], in which the authors identify three crucial elements that 

are required for scene understanding: (i) object detectors, 

(ii) approximate camera position and orientation, (iii) rough 

3D scene geometry. The estimation of geometrical 

properties like the position of the road, the orientation of the 

camera pose or the distance of moving objects can be 

approached in a variety of different ways. The largest family 

of methods is based on multiview sequences or stereo 

vision, such as [2, 3]. Except from specialized applications 

like robot vision or multi-view video surveillance, the 

majority of real-world applications employs single-camera 

setups. A family of algorithms on monocular sequences is 

grouped under the keyword Structure-from- Motion (SfM), 

where ego-motion and changes in perspective are used to 

infer the 3D structure of the scene or of moving  objects, 

e.g., [4, 5]. 

Previous automatic camera rectification approaches on 

monocular sequences are based on rich information 

provided on pixel level. To name a few, Bose and Grimson 

[6] proposed a rectification scheme by observing objects 

which move at constant velocity for some part of their 

trajectory. Lin et al. [7] determined the camera orientation 

through the vanishing point, which is obtained by analyzing 

the bounding box sizes of detected persons. A survey of 

image domain self-calibration techniques is presented in [8]. 

Analysis on pixel level enables accurate camera pose 

estimates, but approximate results can deliver sufficient 

information for certain tasks like object classification [1]. 

Only very few compressed domain attempts have been 

published on this topic. Mbonye [9] uses MPEG-2 

compressed domain data to adjust the camera pose in road 

traffic application with car mounted cameras. 

In [10] we presented an approach to estimate the camera 

orientation based on compressed domain tracking results of 

moving objects. Since the estimation itself relies on the 

results of a processing pipeline with multiple stages, many 

error sources are introduced, which leads to very rough 

approximations of the camera orientation. In this article, we 

propose a more robust compressed domain method for 

constraint environments such as traffic surveillance. An 

overview of the proposed scheme is shown in Fig. 1. The 

different elements of the processing chain are described in 

the following sections. 

 
Fig. 1 : Overview of the proposed system 

 

 

2. ROAD AREA AND DIRECTION ESTIMATION 
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Traffic videosurveillance systems often use an MPEG-type 

video streams such as H.264. During encoding, each picture 

is sub-divided into so-called macroblocks (MBs). Most MBs 

in P- and B-frames are predicted from past or future 

reference frames. Motion vectors (MVs) pointing to the 

position of the current MB in the respective reference 

picture are present in the bit stream. These MVs can be 

regarded as a sparse and noisy version of true scene motion. 

MVs can be easily extracted from the bit stream, only the 

entropy coding has to be reversed and full stream decoding 

can be avoided. The idea is therefore to reuse these vectors 

in order to reduce as much as possible the computational 

load. Using the extracted MVs as input, we construct a gray-

scale motion density map of the scene by counting the 

number of non-zero MVs at all MB and pixel positions. At 

each pixel p, the motion intensity map (MAP) is constructed 

by incrementing the value (MAP(p)) with each incoming 

non-zero MV. MAP is normalized by the number of used 

input frames. The main direction lines (MDL) are therefore 

estimated by maximizing the following energy function: 

𝑀𝐷𝐿(𝐿) = 𝑎𝑟𝑔𝑚𝑎𝑥∑

𝑝∈𝐿

𝑀𝐴𝑃(𝑝) 

with {L} the set of lines crossing the image. If N significant 

maximum of the MDL function are detected, it means that N 

different traffic directions are detected. Fig. 2 shows 

examples of estimated motion maps and detected directions 

lines. If the intersection of two of these MDL are located on 

or above the estimated vanishing line (see section 3), it 

means that they represent the same (or parallel) road (see 

images a, b, and d on Fig. 3). In this case, a line MDLA 

representing the average direction of two MDL is created. If 

it is not the case it means that they represent two different 

roads (see Fig. 3.c). The construction time for the motion 

maps has to be sufficiently long so that moving objects 

occurred throughout the scene. The average training time is 

30 seconds in normal daytime and traffic conditions. 
A MAP represents a rough approximation of the frequented 

ground surface. We obtain a single, binary mask R of the 

road by thresholding the motion map. Holes in the resulting 

binary mask are filled through morphological filtering. A 

last post-processing step consists of rejecting all blobs that 

are situated entirely above the estimated vanishing line. 

Road segmentation results are provided in Fig. 6. All 

important parts of the road have been captured; only the 

security lane in sequence 2 is cut off because no vehicle 

used it during the training period. 
 

3. VANISHING LINE ESTIMATION 

The vehicles vanishing lines (VL) correspond to the distance 

up to which moving vehicles can be sensed. The VL delivers 

important information about the orientation of the camera 

with respect to the ground plane, i.e., the road in our case.  A 

vanishing line can theoretically be outside the image. VL can 

be efficiently approximated by analysing the constructed 

motion maps. To achieve this, the descriptor V is defined as: 

               𝑉(𝐼) = ∑𝑝∈(𝑉𝐿(𝐼)∩𝑅) 𝑀𝐴𝑃(𝑝)                      

(1) 
where VL(I) is a segment centered around and perpendicular 

to the corresponding MDL and MDLA, and crossing it at 

point I. Theoretically, a VL is estimated at the position 

corresponding to VL(I)=0 (no more detected vehicle’s 

displacements). In practice, the used H264 motion fields are 

noisy. As a consequence, we consider that a VL corresponds 

to the  value for which L(i) drops under 3% of its maximal 

value. This threshold has been empirically fixed. Its value is 

not sensitive and very similar results are obtained for a 

range around of 1 to 5%. See examples of the energy 

function VL(I) and the estimated VL in Fig. 3. The method 

delivers good approximations for all test sequences even for 

the rather complex ones. 
 

 

 
         (a)                    (b)                   (c)                    (d) 

Fig. 2. Examples of screenshots (in different weather 

conditions (cloudy (a), rainy (b) and sunny (c,d))) and 

motion density maps. Red lines represent the estimated 

direction of the circulation lanes (MDL). The blue lines 

represent the MDLA. 
 

4. CAMERA POSE ESTIMATION 

 

In this section, we show how the camera orientation can 

be estimated given the position of the vanishing line. Figure 

5 shows the assumed scene setup. If no lens distortion is 

present, the relationship between the object’s distance z to 

the camera (modelled as pinhole) and the vertical bottom 

position on the image sensor ys  can be expressed as 

),)(tan(tan*
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              (2) 

where d is the vertical dimension/height ratio of the image 

sensor, f is the focal length, camh
denotes the camera height 

and cam
the orientation angle of the camera, relative to the 

ground plane. An cam
of 0° corresponds to bird’s eye view 

and 90° means the camera is parallel to the ground. Under 
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the flat ground assumption, the position of the vanishing line 

on the image sensor is given at z . Since 
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                (3) 

the vertical position of the vanishing line YVL
is given as                

 

 

 

 

  
Fig. 3. Left: I vs L(i). Right: estimated positions of the VL 

(in black). Red lines representing the real VL (ground truth) 

are displayed when different from the estimations. In the 

third sequence,  two VL lanes have been detected . 

         

 
Fig. 5. Camera setup 
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what approves that the position of the vanishing line in the 

image plane depends only on the orientation angle of the 

camera, the dimension of the image sensor and the focal 

length, but not on the camera height [11]. For cameras that 

are parallel to the ground ( cam
= 90°), potential lens 

distortions and the focal length also loose their influence, 

because the horizon always appears at d/2, i.e., in the center 

of the image. Equation 4 can be rewritten as 
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                 (5) 

so cam
can be determined if the vertical position of the 

vanishing line VLy and the focal length f are known. It 

should be pointed out that this last assumption is realistic in 

the specific case of traffic videosurveillance applications for 

which the focal f can be known when the camera are 

installed. 
5. DISTANCE INDICATION 

 
    Estimates of the vanishing line and the camera orientation 

allow us to project imaginary equidistant lines from the 

ground plane onto the image plane, hence adding depth 

information to the sequence. The green lines in Fig. 6 

correspond to equidistant lines on the ground plane. They 

have been obtained through Eq. 2 at the estimated camera 

angle where the distance mapping function for the given 

camera angle is sampled at evenly spaced positions. The 

parameter camera height can be set arbitrarily and does not 

influence the calculation, since it only rescales the x-axis but 

does not change the curvature of the function. Equidistant 

lines add a depth measure to the 2D image plane that can be 

used to assist object tracking, detection and classification 

algorithms.  If lane markers are visible, the lines can also be 

used to evaluate the quality of the camera angle estimation 

(if no ground truth is available). 
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Our test sequences have been acquired with cameras  used 

in a traffic videosurveillance system with d = 24 mm and 

f=40 mm. Table 1 gives results for four test sequences. The 

ground truth has been obtained using the manual calibration 

technique proposed by Worrall et al. in [12], which is based 

on parallel lines on the ground plane. The proposed method 

bypasses any potentially erroneous object detection and 

tracking steps, hence the results are more accurate and stable 

than based on moving objects. A visual verification of the 

results can be carried out by drawing equidistant lines in the 

image plane, as illustrated in Fig. 6. Each segment should 

ideally contain the same number of lane separation markers, 

which is approximately the case. If the focal length of the 

camera is unknown, the error which is introduced from 

fixing it at a standard value is limited. In our example, if f is 

varied by ±5mm, cam
changes by only ±1.8°. 

 

6. CONCLUSION 
 

For the specific use-case of highway surveillance, we 

presented a simple and effective method to approximate the 

vertical position of the vanishing line and to segment the 

road portion in the image plane. Based on the position of the 

vanishing line, a robust approach to estimating the camera 

orientation was provided. The method has been tested on 35 

video sequences acquired at different highway locations. In 

94% of the cases, the vanishing line and the estimated 

camera orientation is accurate enough to add depth 

information to the scene, which is crucial regarding 

applications like the classification of vehicles according to 

their size, or the perspective correction of speed 

measurements.   
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Fig. 6. Compressed domain road segmentation results with 

equidistant lines in green 

 

 Seq 1 Seq 2 Seq 3 Seq 4 

cam
[proposed] 

79.5° 75.8° 75.6 ° 77.6 ° 

cam
Ground 

truth [12] 

78.7° 77.5 ° 77.4 ° 76.2 ° 

Table 1. Camera orientation results 
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