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ABSTRACT

Image denoising is challenging due to the difficulty to dif-

ferentiate noise from image fine details. Convolution with a

Gaussian mask is a widely used method for denoising. In this

paper we propose, based on the relation between linear dif-

fusion and Gaussian scale space, estimators of both the vari-

ance and window size of the discrete Gaussian filter applied

to image denoising. To achieve content adaptive estimators,

we also propose a structure under noise measure based on

the median absolute deviation from the image gradient. Our

simulations show that the proposed automated filter performs

comparable or exceeds non-linear diffusion, while being of

significantly lower complexity.

Index Terms— Denoising, Gaussian filter, Gaussian

scale space, linear diffusion, variance, windows size.

1. INTRODUCTION

Noise is unavoidable signal added to real images and videos,

even to those captured by modern high-end cameras. De-

noising has been widely investigated but is still a challenging

problem in real-world applications because of the high com-

putational complexity of advanced denoising methods, and

the difficulty to automatically differentiate noise from image

fine detail. Gaussian filter is a well-known method for denois-

ing but the adaptation of its parameters, the variance σ2 and

window size G, to the image content is a challenge. In this

paper, based on the relation between Gaussian scale space

(GSS) and linear diffusion (LD), we propose estimators for

σ2 and G towards an automated Gaussian filtering (AGSS).

Scale space is the concept to represent signals at different

scales and is useful for several image processing applications.

Convolving with a Gaussian function is a well-established so-

lution to create a non-trivial linear scale space (LSS), that is

causal, translation-invariant, and isotropic (e.g., [1, 2, 3]),

i(x; t) = i(x; 0) ∗ g(x; t), t ≥ 0

=

∫
Rm

i(x1 − a1, · · · , xm − am; 0) · g(a; t)da,

(1)

where ∗ is the convolution operation, i : R
m → R is an m-

dimensional continuous signal, x = {x1, x2, · · · , xm} ∈ R
m

is a location in the signal, m ∈ N, i(x; 0) is the original input

signal, i(x; t) is the signal at scale t, and a = {a1, · · · , am}.

At scale t, the Gaussian function g(x; t) is defined as,

g(x; t) =
1

(4πt)
m

2

e−
x
2
1
+x

2
2
+···+x

2
m

4t . (2)

g(x; t) ≥ 0 is rotationally symmetric and separable. The

Gaussian variance σ2 that controls the information to be

smoothed in the GSS is defined as,

σ2 = t/2. (3)

In discrete space s but still with continuous scale t, (1)

becomes

i(s; t) = i(s; 0) ∗ g(s; t), t ≥ 0, (4)

i : Z
m → R and s = {s1, s2, · · · , sm} ∈ Z.

Convolution with Gaussian in (1) is the solution to the

heat equation,

∂

∂t
i(x; t) = C · ∆i(x; t), (5)

where ∆ is the continuous Laplacian operator, defined as the

divergence of the signal gradient∇i, C is a constant. With the

initial condition limt→0 i(x; t) = i(x; 0) and imposing the

linearity and causality properties. The discrete heat equation

from (5) can be written as,

∂

∂t
i(s; t) = i(s; t) ∗ aL, (6)

where aL is a multiple of the discrete Laplacian operator [2].

Equation (6) is discrete in space s, but continuous in scale

t. To solve this partial differential equation with respect to t,
one could approximate it via the Euler scheme, and the result-

ing discrete LD equation is,

in+1
s = ins + λ ·

∑
p∈W

∇inp (7)
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with |W | is the number of directions along which LD is com-

puted, often W = {North, South, East, West}, s is the

center pixel, 1 ≤ n ≤ N is the current scale, N is the num-

ber of iterations, ins = i(s, n) is the image intensity at s and

n, in+1
s is the next scale of in, ∇ip = (ip − is) is the im-

age gradient in direction p, and λ is the time step (or stability

parameter) responsible for the stability of the difference equa-

tion (7), e.g., λ = 1

4
. The relation between t in (5) and n in

(7) is

t = λ · n. (8)

In this paper, to achieve an adaptive estimation of the

Gaussian filter, we first study the behavior of image structure

under noise and propose a measure to estimate such structure.

Then we relate the Gaussian variance to the LD stopping time

and the Gaussian window size to that estimated variance and

to the noise standard deviation. The rest of this paper is orga-

nized as follows. Section 2 proposes the structure under noise

measure. Section 3 proposes our automated Gaussian filtering

(AGSS). Section 4 presents simulation results. We conclude

the paper in section 5.

2. ESTIMATING IMAGE STRUCTURE UNDER

NOISE

The median absolute deviation of the image gradient (MAD)

is a robust scale estimator [4, 5] that can be used to esti-

mate the image global structure. However, considering noise,

MAD does not accurately reflect the image noise-free struc-

ture. For low structure images, the MAD increases faster with

noise than for high structure images. This is because the im-

age structure hide the added noise (which is in accordance

with the human perception of noise, i.e., the total perceived

noisiness in an image decreases in high frequencies [6]). Ta-

ble 1 compares the increase of MAD under noise (from the

noise-free case to 20dB PSNR) for selected test images, see

Fig. 5. Thus, to account for both noise and image structure,

20dB 25dB 30dB 35dB 40dB Org

MADGray 24.41 13.70 7.69 4.29 2.37 0.00

MADPeppers 25.63 15.06 9.20 6.09 4.52 3.00

MADBaboon 29.90 20.93 15.95 13.17 12.18 11.50

MADPeacock 33.44 25.28 21.21 19.60 19.09 19.00

Table 1: Comparing MAD of increasingly structured images

under noise. ’Org’ is the “noise-free” image.

we propose a structure-under-noise estimator ρ as the ratio be-

tween the estimated noise standard deviation and the MAD,

ρ = η

MAD
,

MAD = median(‖ ∇I − median(‖ ∇I ‖) ‖). (9)

where η2 is the noise variance. Fig. 1 shows how the pro-

posed structure-under-noise estimator well distinguishes be-

tween the selected test images under different noise η. Small

ρ means higher structure than noise. High ρ means the noise

dominates (i.e., more visible) the image structure. For exam-

ple, in Gray image, ρ ≃ 1 for all noise levels because, the

image has no structure.
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Figure 1: ρ = η/MAD as a function of the input noise.

3. AUTOMATED GAUSSIAN FILTERING AGSS

In this section, we estimate the variance σ2 and window size

G of the Gaussian function via estimating N and λ of LD.

For this, we study the relation between N , λ, and η. For a

noise level η, the higher N is, the smaller the needed λ is (see

Fig. 2a). Fig. 2b confirms, the proportion between N and λ
for an optimal denoising. We conclude that for a fixed noise

level η, N and λ are inverse proportional.

Noise is undesirable structure and thus to moderate the

proportion between noise and λ we study the relation between

λ and ρ. Fig. 3 shows that λ is proportional to ρ, i.e., the

higher ρ is the bigger λ should be. In the case when ρ → 1,

the image is either of low structure or very high noise. In both

cases we need bigger λ to perform effective denoising.

Now, we fix λ and study what N is optimal to achieve

highest PSNR gain for different noise levels. Fig. 4 displays

the proportion between N and noise for a fixed λ = 0.1 for

Lena, an image with medium structure: the higher the noise

is, the more N is required but a very high N will cause the

PSNR gain to drop. In fact we notice that for any input noise

level, there is a minimum N required to achieve a reasonable

PSNR. Now, for images such as Baboon, such minimal or

maximal N must be different so to preserve the image struc-

ture. Thus we not only need to consider noise but structure

under noise, represented by the proposed ρ in (9).

Following the above findings, we propose the following λ
and N estimators:

λ = ρ · λmax, (10)

where λmax = 1

4
assuming 4-neighborhood (see [7] and [8]).

N = ρ · √η. (11)
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(a) λ versus N for different noise levels; Barbara.
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(b) N versus λ for 25dB; Lena.

Figure 2: Dependencies between N, λ, η.

Now to estimate the Gaussian filter parameters, we relate

LD and GSS as follows. We know that σ2 = 2t and with (8),

(10) and (11), our estimator for σ2 is,

σ2 = ρ2 · 2 · λmax · √η (12)

Our adaptive estimator for G of the Gaussian function is,

G =
√

ηmax · σ, (13)

where ηmax is the maximum possible noise standard devia-

tion, e.g., equivalent to 10dB. We see that G is adaptive to

the Gaussian variance proportional to the maximum assumed
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Figure 3: Relation between λ and ρ; Peppers.
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Figure 4: N versus the added noise for certain λ; Lena.

Figure 5: Test images used: Gray, Zoneplate, Synt, House,

Peppers, Lena, Boat, Barbara, Baboon, Peacock.

noise. With relating σ and G, the filter decays to nearly zero at

edges, and we will get no discontinuities in the filtered image.

In implementations, we round G to the nearest odd integer.

4. SIMULATION RESULTS

We compare our AGSS with the non-linear diffusion method

of Weickert [9]. This method estimate the stopping time of

Perona and Malik [10] anisotropic diffusion (AD) model,

in+1
s = ins + λ

∑
p∈W

C(∇inp , σAD) · ∇inp , (14)

where C(∇Ip, σ) is the edge-stopping function in direction

p and σAD is the edge strength to control the shape of C(·).
This method works well for images of high structure, but has

high computational cost.

As can be seen in Fig. 6, AGSS removes noise while pre-

serving the image structure without introducing blurring for

either low and high noise. Objectively, Table 2 gives average

gain in the PSNR sense, over eight images, using our AGSS,

with estimated parameters G and σ2. As can be seen, AGSS

achieves high PSNR for the different images, despite being

linear in nature. This is because, with the automated Gaus-

sian filter, practically we are estimating the required time for

the denoising process as well as controlling σ2 and the filter

size. Thus, we avoid blurring the image. We see in Table 2

how well adapted the size and variance to the input noise.

Fig. 7 compares the performance of the proposed AGSS

with the non-linear diffusion of Weickert. As can be seen,

1541



(a) Denoising under 25dB. (b) Denoising under 40dB.

Figure 6: Denoising using AGSS for different noise; Boat

PSNRin 11 15 20 25 30 35 40

Size G 9 8 6 6 4 3 2

Variance σ2 1.03 0.90 0.74 0.59 0.44 0.30 0.19

PSNRAGSS 20.3 23.1 25.8 28.7 31.9 35.5 40.0

Table 2: Estimated parameters and average output PSNR for

AGSS over Peppers, Lena, Field, House, Boat, Barbara, Ba-

boon and Peacock.

AGSS has comparable results under high noise, and outper-

forms non-linear diffusion under low noise. The computa-

tional cost of AGSS is much less than non-linear diffusion.

5. CONCLUSION

In this paper, we revisited Gaussian filter for image denois-

ing, where we studied the relation between Gaussian scale

space and linear diffusion and derived estimates for the Gaus-

sian variance and window size. To adapt the estimates to im-

age structure, we proposed a structure measure using the the

noise variance and the median absolute deviation of the image

gradient. Simulations show that the proposed estimators well

adapt the Gaussian convolution to images of different struc-

ture and noise levels for effective fast denoising. The pro-

posed method gave similar or better results compared to non-

linear diffusion filters, with much less computational cost.
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