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ABSTRACT 

 

In many communication systems, information carrying 

symbols are transmitted in blocks with guard intervals 

between blocks for avoiding inter-block interference. This 

paper proposes a block transmission system that can be 

decomposed into a set of parallel subblock transmission 

systems having additive white Gaussian noise (AWGN) 

channels with equal noise powers even when the channel 

additive noise is non-Gaussian. The block transmission 

system has the advantages that standard signal design, block 

codes, and symbol detection methods for an AWGN channel 

are easily incorporated into the block transmission system 

and that the system is easily implemented by FFT processors. 

 

Index Terms— Block transmission, OFDM, spread 

spectrum communication, Multiplexing, channel 

equalization. 

 

1. INTRODUCTION 

 

In many communication systems, symbols are transmitted in 

blocks or frames. Digital audio broadcasting employs block-

wise processing such as block coding that may include a 

filter bank or a lapped transform to improve coding 

efficiency [1]. One of the most important block transmission 

systems is the orthogonal frequency division multiplexing 

(OFDM). In OFDM, information carrying symbols are 

multiplexed using the inverse discrete Fourier transform 

(IDFT) at the transmitter, and recovers the symbols using the 

discrete Fourier transform (DFT) at the receiver. When there 

is a frequency-selective fading in the channel, reliable 

detection of symbols carried by the faded subcarriers 

becomes difficult because the system splits the frequency-

selective spectrum into a large number of independent 

narrowband flat sub-channels. In order to overcome this 

difficulty, spreading techniques are incorporated into the 

OFDM system such as the complex-field coding [2], 

Hadamard or Fourier type transform methods [3], and short 

block transform methods [4]. 

This paper proposes a new block transmission system in 

which information carrying symbols are grouped into a 

number of subblocks. At a transmitter, these subblocks are 

multiplexed into a single sequence which is then transmitted. 

At a receiver, an equalizer is applied, and then the 

transmitted symbols are recovered by the demultiplexer 

which performs the reverse of the multiplexer. The 

multicarrier residue division multiplexing (MC-RDM) in [5] 

is used as the multiplexer because it has the property that 

information of each subblock symbol is dispersed among 

transmitting symbols with respect time as well as frequency. 

The proposed system has the property that, even when there 

is a frequency-selective fading in the channel, subblock 

noise symbols due to an additive noise on the propagation 

channel become uncorrelated Gaussian random variables 

with same variances for a wide range of additive noise types. 

In other words, the block transmission system is 

decomposed into a set of additive white Gaussian noise 

(AWGN) channel systems with equal noise powers. 

 

2. BLOCK TRANSMISSION SYSTEM 

 

The baseband model of the proposing block transmission 

system is depicted in Fig. 1. The system transmits N=KM 

symbols in one block that are grouped into M subblocks 

Xm=[Xm(0) Xm(1) … Xm(K-1)], 0≤m≤M-1, of length K. 

According to MC-RDM in [5], these subblocks are 

multiplexed into a single N-length transmitting sequence 

x(n), 0≤n≤N-1, which  is obtained by 
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The K-length sequences [x(m) x(M+m) …x((K-1)M+m)], 

0≤m≤M-1, are called polyphase components of the sequence 

x(n), 0≤n≤N-1. The above equations say that the polyphase 

components are computed by K-point IFFT processors as 

shown in the figure. The polyphase components are 

composed into the single sequence x(n) at the box indicated 

by Poly. Com. 

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 2546



 
The discrete-time version of baseband distortion from 

the transmitted sequence to the received sequence is 

represented by the channel impulse response h(n), and the 

channel additive noise ψ(n). We assume that interblock 

interference is avoided by placing a guard interval before 

transmitting the next block, the guard interval greater than 

the length of the channel impulse response. 

The received sequence at the receiver is denoted as r(n). 

An equalizer whose impulse response is denoted as g(n) is 

applied to the received sequence in order to cancel the effect 

of the channel impulse response. The equalizer output 

sequence y(n), 0≤n≤N-1, is decomposed into its polyphase 

components [y(m) y(M+m) …y((K-1)M+m)], 0≤m≤M-1. The 

subblock symbols are recovered by taking the K-point FFTs 

of the polyphase components as 
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Clearly, if the equalizer output is equal to the transmitted 

sequence, that is, y(n)=x(n), the recovered subblocks 

Ym=[Ym(0) Ym(1) … Ym(K-1)], 0≤m≤M-1, coincide with the 

transmitted subblocks 

 

3. NOISE ANALYSIS 

 

We assume that the channel additive noise samples ψ(n) and 

ψ(n’) are statistically independent when n≠n’, and that the 

noise is zero-mean with the variance σψ
2
=E{|ψ(n)|

2
}, where 

E{•} denotes the expected value. The noise may be non-

Gaussian such as impulsive noise. 
If the length of the equalizer impulse response g(n) is 

denoted as Lg, the equalizer output noise φ(n) is given by 
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The variance of the equalizer output noise is then given by  
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This variance is independent of the time index n. 

According to (2), the subblock noise Φm(k) contained in 

the recovered subblock symbol Ym(k) is given by 
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Each subblock noise symbol is given as a linear sum of 

equalizer output noise symbols separated by M-1 samples. 

Equation (3) says that, if M≥Lg, the noise samples φ(iM+m), 

0≤i≤K-1, are mutually independent. Therefore, if M≥Lg, 

each of the subblock noise symbol is given as a sum of K 

statistically independent random variables.  
The above property is clearly different from the case of 

OFDM, in which the receiver takes DFT of consecutive 

samples. The central-limit theorem says that a sum of 

statistically independent random variables of fairly general 

statistical types approaches a Gaussian random variable as 

the number of sum increases [6]. When M≥Lg, we have 
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The above arguments are summarized in the following 

property. 

Property: Suppose that the channel additive noise ψ(n) 

and ψ(n’) are zero-mean independent for n≠n’. If the 

number M of the subblocks is greater than or equal to the 

equalizer impulse response length Lg, then the subblock 

noise symbols Φm(k), 0≤k≤K-1, approaches zero-mean 

uncorrelated Gaussian random variables with the same 

variances as the subblock length K increases for fairly 

general propagation additive noise types. 

 

4. EQUALIZER DESIGN 

 

As seen in the property of the previous section, it is 

desirable to design the equalizer such that the impulse 

response length Lg is as short as possible while keeping its 

ability to cancel the distortion due to the channel impulse 

response.  

Let h(n), 0≤n≤Lh-1, be the channel impulse response 

where Lh denote the length, and introduce the (Lh+Lg-1)×Lg 

matrix H defined by 
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Fig. 1. The proposed baseband block transmission. 
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The equalizer impulse response is represented in the vector 

as g=[g(0) g(1) … g(Lg-1)]
T
. We may design the equalizer 

by finding the vector g that minimizes 
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In this equaltion, u is the (Lh+Lg-1)-dimensional column 

vector having one at the [Lg/2]th place and zeros in all the 

other entries, where [Lg/2] denotes the integral part of Lg/2. 

Then the equalizer output will yields the approximate to the 

[Lg/2]-unit times delayed version of the transmitted sequence. 

Calculation shows that the vector ĝ that minimizes D is 

obtained as 

 

( ) *

]2/[

1*ˆ
LgHHH

−
=g     (9) 

 

where H[Lg/2] is the [Lg/2]th low vector of the matrix H. Let 
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This value indicates the performance of the equalizer when 

the length of the equalizer impulse response is Lg. 

 

Example 1: We demonstrate the equalizer design using 

Rayleigh distributed channels, having complex zero-mean 

Gaussian taps with exponential power profile 
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where σh
2
 and c are real constants with 0<c<1. This type of 

channel models is widely used for simulations [7]- [9]. For 

creating the matrix H, the channel impulse response length 

Lh is decided as the smallest integer n such that c
n
<10

-5
. 

Channel impulse responses are created according to Monte 

Carlo trials, and Dmin is estimated by the numerical average 

of 200 trials. The average of Dmin is ploted as a function of 

Lg in Fig. 2 for c=0.4, 0.6, and 0.8. Dmin rapidly decreases as 

Lg increases, and can be made sufficiently small if Lg≥32. 

For this choice of Lg, it is sufficient to choose M=32 in order 

to make φ(iM+m), 0≤i≤K-1, are mutually independent. 

5 10 15 20 25 30 35 40
0

0.002

0.004

0.006

0.008

0.01

0.012

Lg

 
Fig. 2. Dmin as a function of the length Lg of the equalizer 

impulse response. 

 

5. IMPULSIVE NOISE ANALYSIS 

 

Non-Gaussian noise that appears frequently in practice is 

impulsive noise. When the propagation channel is 

contaminated by such noise, an OFDM system performs 

better than a single carrier system because of its time-

diversity [10]. The performance can be further improved by 

estimating impulsive noise terms on a frequency domain and 

subtracting them from the equalizer output [11], or by 

incorporating error-correcting-type codes for canceling 

impulsive noise [12]. However, when there is a frequency-

selective fading in the channel, reliable detection of symbols 

carried by the faded subcarriers becomes difficult. In order 

to overcome this difficulty, spreading techniques are 

incorporated into the OFDM system such as the complex-

field coding [2], Hadamard or Fourier type transform 

methods [3], and short block transform methods [4]. 

Since the statistic of the channel additive noise ψ(n) is 

assumed to be independent of n, the impulsive noise model 

is, ignoring dependency on n for notational simplicity, 

represented as 
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where α and β are zero-mean white Gaussian noise 

processes with variances σα
2
 and σβ

2
, respectively, such that 

σβ
2
 is much greater than σα

2
, and λ is a random variable that 

is either zero or one [10], [12]. The probability of λ=1 is 

denoted by pλ. The variance of ψ is then given by 

σψ
2
=E{|ψ|

2
}=σα

2
+pλσβ

2
. 

The probability density function (PDF) of the complex 

Gaussian random variable α is written as [13] 
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The PDF of the second term µ in ψ is given by 

——— : c=0.4 

••••••••• : c=0.6 

– • – • – : c=0.8 
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where µ=µR+jµI, and δ(µR) is the Dirac delta function.  

The characteristic function of α is given as 
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In this equation, ωR and ωI represent the real and imaginary 

parts of ω, respectively. This notational convention is 

applied for other variables as well. By (14), the 

characteristic function of µ is given by 
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Since α and µ are mutually independent, the characteristic 

function of the channel noise ψ is given as the product of the 

characteristic functions of α and µ which is 
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This channel noise is fed into the equalizer. 

According to (3), the equalizer output noise φ(n) is the 

sum of g(m)ψ(n-m), 0≤m≤Lg-1. Since the statistic of the 

channel noise ψ(n-m) is independent of n-m, the channel 

noise is represented as ψ(n-m)=ψR+jψI. Then the real and 

the imaginary parts of g(m)ψ(n-m) are given by gR(m)ψR-

gI(m)ψI, and gR(m)ψI+gI(m)ψR, respectively. The 

characteristic function of g(m)ψ(n-m) is computed as 

 

( )ωω ψψ )()(
*

)()( mgmnmg Γ=Γ −    (18) 

 

Since g(m)ψ(n-m), 0≤m≤Lg-1, are statistically independent, 

the characteristic function of φ(n) is obtained as the product 

of these characteristic functions which is given by 
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By (4) and σψ
2
=E{|ψ|

2
}=σα

2
+pλσβ

2
, the variance of φ is 

given as 
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Fig. 3. Square difference (SD) as a function of K. 
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Fig. 4. Real parts of typical channel noise ψ(n) and subblock 

noise Φm(k) when σα
2
=0.001, σβ

2
=0.1, pλ=0.01, and 

M=K=32. 
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The subblock noise symbol Φm(k) is a linear sum of 

φ(nM+m)/(K
1/2

), 0≤n≤K-1, according to (19). We assume 

that M is large enough so that φ(nM+m) /(K
1/2

), 0≤n≤K-1, 

are independent. Then the characteristic function of Φm(k) is 

given by [6] 

 
K

L

m

K
g

K

mg

K 

















Γ=


















Γ=Γ ∏

−

=
Φ

1

0

* )(
)(

ωω
ω ψφ

 

(21) 

 

As K increases, this characteristic function should approach 

the characteristic function for a Gaussian random variable 

with the variance σφ
2
 because the variances of Φ and φ are 

equal by (6). 
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Example 2: The channel impulse response model in 

Example 1 is used for this example as well. The equalizer is 

designed by assigning its impulse response length to be 

Lg=32 which is sufficiently long to cancel the effect of the 

linear distortion due to the channel impulse response as seen 

by Fig. 2. For this equalizer, if M≥32, φ(nM+m) /(K
1/2

), 

0≤n≤K-1, are independent. 

The impulsive noise is created using parameters: 

σα
2
=0.001, σβ

2
=0.1, and pλ=0.01. The difference between 

ΓΦ(ω) and the characteristic function of a Gaussian random 

variable with the variance σφ
2
 is measured by the square 

difference (SD), 
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Numerical averages of SDs are plotted in Fig. 3 as a 

function of K when the profile decaying constants for the 

channel impulse response are c=0.4, 0.6, and 0.8. The 

characteristic function is sufficiently close to the 

characteristic function for a Gaussian random variable by 

choosing K≥32. Combining with the condition M≥32, the 

condition on the block length becomes N=MK≥1024. 

Real parts of typical channel noise and the sublock noise 

are shown in Fig. 4, when M=32, K=32, and c=0.6. The 

subblock noise sequences [Φm(0) Φm(1) … Φm(K-1)] are 

arranged in the order m=0, 1, …, M-1. While the channel 

noise has clear impulsive spikes, the subblock noise looks 

typical zero-mean white Gaussian. 

 

6. CONCLUSION 

 

This paper has proposed a block transmission system that 

can be viewed as a set of subblock transmission systems 

with additive white Gaussian noise (AWGN) channels of 

same variances even if the propagation additive noise is non-

Gaussian such as impulsive noise. Spreading techniques 

often used for the OFDM system are not required. Standard 

modulation, signaling techniques, and block error correcting 

codes are easily incorporated into each of the subblock 

systems. The system can be implemented efficiently using 

FFT processors. 
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