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ABSTRACT

The paper addresses the problem of signal-dependent sam-

pling of analogue signals according to local bandwidth. An

extended sampling theorem is given which states that sig-

nals can be sampled non-uniformly and then perfectly recon-

structed if spectrum obtained by an extended Fourier trans-

form (EFT) is bandlimited. Since, according to the theorem,

the sampling instants are determined by the function used in

EFT, the aim is to find such function which reflects the time-

varying spectral content of the signal. This, in comparison

to uniform sampling, allows reducing the number of samples

required to represent the signal. The results have been demon-

strated by numerical simulations on two signals.

Index Terms— Signal-dependent sampling, extended

sampling theorem, maximum instantaneous frequency, signal

decomposition.

1. INTRODUCTION

The Nyquist-Shannon sampling theorem states that every

bandlimited signal is uniquely determined by its samples

taken uniformly at a rate of at least twice the bandwidth of

the signal. The bandwidth follows from analyzing the sig-

nal by Fourier transform (FT) in the whole duration of the

signal and thus can be considered as the global bandwidth.

Such analyze, however, does not provide information about

time-varying frequency content of the signal, which in turn

could be used to sample the signal in signal-dependent way

with more samples taken at high frequency regions and less

samples – in low frequency regions.

In this paper, we address the problem, also discussed in

[1], [2] and [3], of adapting the sampling rate to local band-

width of the signal. In Section 2 we propose an extended sam-

pling theorem which states that signals can be sampled non-

uniformly and then perfectly reconstructed. Then, in Sec-

tion 3, follows an estimation of maximum instantaneous fre-

quency of the signal, which determines the sampling instants

of signal-dependent sampling. And in the last Section 4, nu-

merical simulations on two signals with time-varying spectral

content are provided.

2. EXTENDED SAMPLING THEOREM

The extended sampling theorem follows from definitions of

direct and inverse extended Fourier transforms in [3].

Given a positive function g(t), the extended Fourier trans-
form (EFT) of the signal s(t) is defined as

S(ωg) = F̃ [s(t), g(t)] =

∫ ∞

−∞

s(t)

g(t)
e−jωgm(t)dt, (1)

where

m(t) =

∫ t

0

1

g(τ)
dτ (2)

The signal s(t) can be reconstructed from S(ωg) by the in-

verse EFT

s(t) = F̃−1[S(ωg), g(t)] =
1

2π

∫ ∞

−∞

S(ωg)e
jωgm(t)dωg

(3)

The classical FT and inverse FT follow from (1) and (3) if

g(t) = 1.
In [3] the authors have also defined an extended convolu-

tion in time domain

x(t)⊗ s(t) =

∫ ∞

−∞

x(τ)

g(τ)
s(m−1(m(t)−m(τ)))dτ (4)

with m−1(.) representing the inverse function of m(t). This
definition is useful since EFT of the convolution signal y(t) =
x(t)⊗ s(t) is

Y (ωg) = X(ωg)S(ωg) (5)

Proposition of the extended sampling theorem: every

bandlimited to [−Ωg, Ωg] signal s(t) is uniquely determined

by its samples s(tn) taken at instants tn = m−1(nΥ ) with a

sampling step Υ ≤ π
Ωg

. The reconstruction formula is

s(t) =
∞
∑

n=−∞

s(tn)sinc(
π

Υ
(m(t)−m(tn))) (6)

In this case the signal is bandlimited if the spectrum F̃ [s(t), g(t)]
is zero outside the band [−Ωg, Ωg].
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Fig. 1. EFT spectrums of the analog (a) and discrete (b) sig-

nals and recovery of the original spectrum by analogue filter-

ing (c).

The proof of the theorem. The discrete signal can be

represented as

sd(t) = s(t)

∞
∑

n=−∞

δ(t− tn) (7)

If the sampling instants are chosen according to equation

m(tn) = nΥ , i.e.,

tn = m−1(nΥ ) (8)

with Υ > 0, then the sequence of delta pulses can be equally

written as

∞
∑

n=−∞

δ(t− tn) =

∞
∑

n=−∞

δ(m(t)− nΥ ) (9)

By denoting u = m(t), the obtained sequence
∑∞

n=−∞
δ(u−

nΥ ) is periodic and can be expanded in Fourier series as

∞
∑

n=−∞

δ(u − nΥ ) =
1

Υ

∞
∑

n=−∞

ejn
2π
Υ

u (10)

From (7), (9) and (10) follows

sd(t) =
1

Υ

∞
∑

n=−∞

s(t)ejn
2π
Υ

m(t) (11)

Considering the EFT property: if X(ωg) = F̃ [x(t), g(t)],

then F̃ [x(t)e±jαm(t), g(t)] = X(ωg ∓ α), the EFT of sd(t)
is

Sd(ωg) =
1

Υ

∞
∑

n=−∞

S(ωg − n
2π

Υ
) (12)
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Fig. 2. Sampling according to m(t): samples s(tn) ar taken
at tn = m−1(nΥ ).

That means the spectrum of the discrete signal is periodic with

period 2π/Υ (Figure 1). It also follows, that if the analogue

signal is bandlimited to [−Ωg, Ωg], then the sampling step

must be chosen

Υ ≤
π

Ωg

(13)

to ensure the periodic spectrum of the discrete signal does not

overlap. If (13) holds, then the original spectrum S(ωg) can
be reconstructed by multiplying Sd(ωg) and

H(ωg) =

{

Υ, if |ωg| ≤ π/Υ

0, if |ωg| > π/Υ
(14)

According to (4) and (5) multiplication in frequency domain

S(ωg) = Sd(ωg)H(ωg) (15)

corresponds to extended convolution in time domain

s(t) =

∫ ∞

−∞

sd(τ)

g(τ)
h(m−1(m(t) −m(τ)))dτ, (16)

where

h(t) = F̃−1[H(ωg), g(t)] = sinc(
π

Υ
m(t)) (17)

From (7), (9), (16) and (17) follows the reconstruction for-

mula (6). The special case when g(t) = 1 leads to classical

uniform sampling.
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Example. If we have a signal composed of frequency

modulated oscillations

s1(t) =

L
∑

l=1

Alcos(klm(t)) (18)

with coefficients 0 < k1 < k2 < · · · < kL, then EFT of s1(t)
is

S1(ωg) =
L
∑

l=1

Alπ(δ(ωg + kl) + δ(ωg − kl)) (19)

It follows that the signal is bandlimited to [−kL, kL] and can

be represented by samples s1(tn) taken at tn = m−1(nπ/kL).
The sampling case when Υ = π/kL and kL = 1 is illustrated

in Figure 2.

3. ESTIMATION OF THE MAXIMUM

INSTANTANEOUS FREQUENCY

The question is: according to the extended sampling theorem,

how should we sample the signal with sampling rate being

adapted to local bandwidth? The answer is to find such func-

tion g(t) which reflects the time-varying spectral content of

the signal and gives the spectrum S(ωg) = F̃ [s(t), g(t)] with
zero values outside some limited band [−Ωg, Ωg]. However,
an analytical solution for many real signals is difficult or even

impossible to obtain, thus the following proposition is made.

Given a signal

s(t) =

L
∑

l=1

Alcos(Φl(t)) (20)

with constant Al and monotonically increasing Φl(t), a max-

imum instantaneous frequency fmax(t) of s(t) is defined as

having values

fmax(τ) = max(f1(τ), f2(τ), . . . , fL(τ)) (21)

at any given t = τ and fl(t) being instantaneous frequencies

of cosines

fl(t) =
1

2π

dΦl(t)

dt
(22)

From fmax(t) the functions

g(t) = 1/(2πfmax(t)) (23)

andm(t) according to (2) are found.

By such definition of g(t) we can not in general ex-

pect that S(ωg) will be located within some limited band,

however, we can find the frequency Ωg with corresponding

band [−Ωg, Ωg] that contains the major part of signal en-

ergy. Given this frequency, the samples s(tn) ar taken at

tn = m−1(nπ/Ωg) and for reconstruction the interpolation

formula (6) is used

ŝ(t) =

∞
∑

n=−∞

s(tn)sinc(Ωg(m(t)−m(tn))) (24)

Because of sampling, frequency aliasing occurs and ŝ(t) does
not fit the original s(t) exactly. The precision improves as the

bandwidth Ωg increases.

If no frequencies fl(t) are given or the signal differs from
(20), then the idea for estimation of fmax(t) is to decompose

the signal into a finite number of Intrinsic Mode Functions

(IMFs) using the Empirical Mode Decomposition (EMD) [4],

[5]. According to this technique, the IMFs are acquired by

sifting process, which sequentially gives several IMFs sub-

jected to certain conditions and a low frequency residue com-

ponent r(t). In result the signal can be written as

s(t) =

J
∑

j=1

cj(t) + r(t), (25)

where the first IMF c1(t) contains the highest frequency com-

ponent of the signal, and thus we are interested in finding only

this component. The procedure is following:

1. All the local extrema of the signal s(t) are found and

then connected using smooth cubic splines to get the

top and bottom envelopes sup(t) and slow(t) of the sig-
nal. To make connections at the end points, either sig-

nal values or the mean values of local maxima and min-

ima are used depending on their relations to each other.

If the mean value of all local maxima is less than the

signal value, then the signal value is used for connec-

tion to get the top envelope. Similarly, if the mean value

of all local minima is less than the signal value, then the

mean value is used to get the bottom envelope [5].

2. The next step is finding the mean envelope s̄1(t) =
(sup(t)+slow(t))/2, which is then subtracted from the

signal to get the difference x1(t) = s(t)− s̄1(t).

3. Regarding x1(t) as the new data and repeating steps (1)

and (2) until the resulting signal meets the criteria of an

IMF, the first component c1(t) is found.

Given c1(t), the instantaneous frequency of the first IMF is

found by Hilbert transform and then lowpass filtered in or-

der to remove spurious oscillations. The obtained frequency

function f̂max(t) is then assumed to be the estimate of the

instantaneous maximum frequency of the signal s(t).

4. SIMULATION RESULTS

The extended sampling with non-uniformly placed samples

has been tested on two signals. The first signal s1(t) is artifi-
cial and consists of three frequency modulated oscillations

s1(t) = cos(Φ(t)) + cos(3Φ(t)/2) + cos(3Φ(t)), (26)
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Fig. 3. Reconstruction of the test signal.
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Fig. 4. Reconstruction of the EEG signal.
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while the second signal s2(t) is a real up to 30 Hz low-pass

filtered EEG signal. The fragments of the signals are shown

in Figures 3a and 4a by the solid lines.

In order to perform the sampling the first step is to es-

timate the instantaneous maximum frequency of the signal.

The proposition is to use EMD method to find the first IMF

of the signal and then obtain its lowpass filtered instantaneous

frequency, which is assumed to be the instantaneous maxi-

mum frequency f̂max(t) of the signal.

The obtained result for s1(t) is shown in Figure 3b by the
bold line, while the 3 thin lines correspond to frequencies of

the true components of the signal. From the figure follows

that estimated frequency is either greater or very close to the

frequency of the third component. The desirable result would

be that these two frequencies fit.

The estimated frequency for EEG signal is shown in Fig-

ure 4b (bold line). The colors in background correspond to

time-frequency representation of the signal obtained by short-

time Fourier transform.

After estimation of f̂max(t), the sampling follows. The

functions g(t) andm(t) are found from (23) and (2) and sam-

ples s(tn) are taken at tn = m−1(nΥ ). The sampling step

Υ must be chosen according to (13) if the spectrum S(ωg) =

F̃ [s(t), g(t)] is zero outside the band [−Ωg, Ωg]. If the sig-

nal is not bandlimited, then the frequency Ωg is chosen such

that the bandwidth [−Ωg, Ωg] contains the most part of signal

energy.

In the case of the first signal s1(t) the spectrum S1(ωg)
is not bandlimited. It would be bandlimited if the estimated

frequency (bold line in Figure 3b) conformed to the frequency

of the third component (upper thin line in Figure 3b). Since

this is not the case here, then the frequency Ωg is chosen to

be Ωg = 1.3 and the sampling step is Υ = π/Ωg . Sampling

causes frequency aliasing and the reconstructed signal ŝ1(t)
differs from the original by e1(t) = s1(t) − ŝ1(t). The error
signal e1(t) is shown by the dashed line in Figure 3a.

The precision of reconstruction improves as the the sam-

pling step π/Ωg decreases, i.e., the average number of sam-

ples per second increases. This is shown in Figure 3c by the

solid line, where the values on y-axis correspond to the av-

erage power of the error signal e1(t). The result is quite ob-
vious since decrease in sampling step follows from increase

in Ωg and thus the spectral overlap decreases. An empty cir-

cle in Figure 3c corresponds to reconstruction example when

Ωg = 1.3.

To compare with the classical sampling approach, the sig-

nal was also reconstructed from uniform samples. The recon-

struction error depending on the sampling rate is shown by

the dashed line in Figure 3c. From figure follows, that equally

good reconstruction in signal-dependent sampling case is ob-

tained with considerably less number of samples than in uni-

form sampling case.

In the case of the EEG signal the spectrum S2(ωg) is also
not bandlimited and thus the frequency Ωg is chosen to be

Ωg = 1.3. Due to spectral overlap the reconstructed signal

ŝ2(t) differs from the original by e2(t) = s2(t) − ŝ2(t), as
shown in Figure 4a by the dashed line. The reconstruction

error reduces with the increase of Ωg , which in turn increases

the average number of samples per second. This is shown in

Figure 4c by the solid line, while the thin line corresponds

to the uniform sampling case. From the figure follows that

better reconstruction from less samples is achieved in signal-

dependent sampling case.

5. CONCLUSIONS

The results show that adaptation of sampling rate to time-

varying spectral content of the signal in the form of estimated

maximum instantaneous frequency of the first EMD compo-

nent allows obtaining better reconstruction from less samples

in comparison to uniform sampling. Besides EMD method

there may be other techniques like spectrogram analysis or

time-varying filtering approach for finding more optimal fre-

quency functions providing more compact EFT spectrums of

the signal. The presence of noise in the signal should also be

considered. These are the topics for further investigation.
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