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ABSTRACT
The electrocardiogram (ECG) is a powerful non-invasive tool
which allows for diagnosis of a wide range of heart condi-
tions. Today, portable ECG recording devices, equipped with
a transmitter, can be used to provide health related informa-
tion and to trigger alarms in case of life threatening situations.
However, these devices suffer from motion induced artifacts.
While much research has been conducted to remove time in-
variant noise, the removal of motion induced artifacts remains
an unsolved problem. We therefore introduce a new method
which removes these artifacts. This is done by obtaining an
estimate of the artifacts using the stationary wavelet transfor-
mation. An automatic multi-resolution thresholding scheme
which uses a robustified QRS detection is proposed. Real data
examples as well as simulations are given which illustrate the
performance of the method.

Index Terms— ECG, motion induced artifacts, outliers,
stationary wavelet transform

1. INTRODUCTION

The electrocardiogram (ECG) is a non-invasive diagnostic
tool to record the electrical activity of the heart. This is done
by measuring the potential difference between several elec-
trodes which are placed on the skin at predefined points of
the human body. One cycle of the ECG represents the depo-
larization/repolarization of the atrium and the ventricle which
occurs for every heartbeat. These appears as P wave, QRS
complex and T wave, see Figure 1. ECG is used to detect ab-
normalities, such as heart arrhythmia. For automated signal
processing methods, as well as for clinicians, it is important
that the ECG recordings are noise free and not corrupted by
outliers, if possible [1]. However, it is not always possible
to produce clean measurements. For an ECG recording, a
simple movement by the patient creates a significant artifact
[2]. This is illustrated in Figure 1, where the left arm has
been moved. The example was recorded at our lab using a
one lead configuration with fs = 100Hz. The figure depicts
a typical motion induced artifact which occurs approximately
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Fig. 1. ECG signal with patient motion induced artifacts and
impulsive noise due to armmovement approximately between
570 and 680 samples.

from 630 < n < 680 and is preceded by impulsive noise.
Today, portable ECG recording devices, equipped with a
transmitter, can be used to provide health related information
and to trigger alarms in case of life threatening situations.
Most existing work in ECG de-noising effectively removes
contaminants such as power line interference, contact noise
or baseline wandering, see e.g. [3] for an overview of recent
research. In [3], Li and Lin introduced an optimal de-noising
algorithm for ECG signals which uses the stationary wavelet
transform (SWT). This is achieved by finding the best com-
bination and parameters of previously proposed SWT-based
methods of ECG signal de-noising. In Figure 2 the result of
this algorithm for the previously mentioned ECG recording
is depicted. The invariant noise of the recording is removed.
However, the example shows that the algorithm is not ro-
bust against motion induced artifacts and impulsive noise.
This therefore constitutes the focus of our work. Pawar et
al. proposed a method to classify and reduce these artifacts
[4]. However, their method requires patient specific training
data for the different types of movements, which is a draw-
back. Obtaining the training data for each patient is very
time consuming. Furthermore, due to the non-stationarity of
ECG signals [5] and artifacts, the characteristics may change
over time. Hence, we propose a robust method to remove
motion induced artifacts which works fully automatically and
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Fig. 3. Scheme of the multi-resolution thresholding algorithm.
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Fig. 2. Result of ECG recording (Figure 1) using the optimal
de-noising algorithm proposed in [3], which is clearly not ro-
bust against motion induced artifacts.

independent of the specific patient and recording. To achieve
this, we use the stationary wavelet transform which allows
for a better separation of signal and artifacts than time or
frequency based methods.
Our paper is organized as follows. We start with a description
of the algorithm in Section 2. Then we show some results
in Section 3 followed by the conclusion and future work in
Section 4.

2. ALGORITHM

The idea of our algorithm is to estimate a signal ŝoutliers(n),
which represents the motion induced artifacts and impulsive
noise. This signal is then subtracted from the recorded signal
to get a cleaned ECG signal:

ŝcleaned(n) = srecorded(n)−ŝoutliers(n), n = 1, . . . , N. (1)

This is well motivated, since motion induced artifacts are ad-
ditive disturbances. We use the diversity of the coefficient se-
quences obtained by the SWT and a multi-resolution thresh-
olding methodology to estimate ŝoutliers(n). The scheme of
the algorithm is shown in Figure 3. The single blocks are
described in the following.

2.1. Stationary Wavelet Transform (SWT)

The algorithm starts with the SWT. It is a powerful tool for
non-stationary signals [6], such as ECG signals. In our ap-

proach, we use the SWT for two reasons: (i) The SWT is
invariant against shifts of the signal in the time domain. The
digital wavelet transform (DWT), which is also used for ECG
signal de-noising [7], can not provide this feature. This be-
comes critical for detecting specified signal components like
motion induced artifacts and outliers as well as QRS com-
plexes. (ii) The decimation of the coefficients at each level
of the transformation algorithm is omitted, more samples in
the coefficient sequences are available and hence a better out-
lier detection can be performed. The implementation of the
SWT, which is based on the pyramid algorithm introduced by
Mallat [8], is depicted in Figure 4. The wavelet coefficients
are given by the sequences {w1, w2, . . . , wM} and the scal-
ing coefficients by the sequences {d1, d2, . . . , dM}, whereM
denotes the order of the SWT. hs and gs are the impulse re-
sponses of the high- and low-pass filters, which are upsam-
pled by a factor of two at each stage s = 1, 2, . . . ,M . To
represent the signal we need all wavelet coefficient sequences
and the scaling coefficients at level M . Extensive empirical

g 1

h1

d 0 d 1

w1 wM

d M

hM

g M
d M−1

with

g s hs hs+1
g s+1↑ 2 ↑ 2

Fig. 4. Overview of the implementation of the SWT [8] which
is shift invariant.

evaluations have shown that the choice of the mother wavelet
has little impact on the performance of our algorithm. Hence,
we use the simplest mother wavelet, the Haar wavelet. Also
we setM = 5 as in [3], which provides a good trade off be-
tween the amount of available information and computational
effort. Figure 5 shows the SWT of the exemplary recorded
ECG signal, see Figure 1, using the above described parame-
ters. Additionally to the ECG signal, the wavelet coefficients
and the scaling coefficients are displayed. The first three co-
efficient sequences mostly represent the fast changing parts of
the signal, like the QRS complexes and the oscillating noise.
The last three sequences contain information of slow changes
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Fig. 5. SWT of the ECG signal from Figure 1. The diversity
of the coefficient sequences can be used to separate signal and
outliers.

in the signal, due to the P and T waves and the motion in-
duced artifact. To obtain the coefficients, which represent the
outliers, we compute upper and lower thresholds using ro-
bust statistics [9] for each coefficient sequence. For w4(n),
w5(n) and d5(n) this is straight forward. For w1(n), w2(n)
and w3(n) the outliers are masked by the coefficients repre-
senting the QRS complexes. In order to overcome this prob-
lem, we detect the QRS complexes and remove them from the
first three coefficient sequences before calculating the thresh-
olds. The QRS detection and removal is described in the next
section.

2.2. QRS detection

The QRS detection is based on the method proposed in [10]
with some modifications: At first, the wavelet shrinkage
method developed by Donoho and Johnstone [11] is used
to denoise the signal. The denoised signal is then filtered
by a high-pass in order to suppress the P and T waves. Af-
ter this, the QRS feature signal z(n), which represents the
energy over a window, is computed. To detect the QRS
complexes a threshold TQRS is used. Since the threshold
proposed by Chen et al. is not robust against motion in-
duced artifacts, we define a new threshold. First, we split
z(n) into equally long segments and calculate the maxi-
mum of each segment. Then we compute the threshold by
TQRS = µ̂(maxima) − c · σ̂(maxima). Robust estimates of
the mean µ and scale σ, i.e. the median and the normalized
median absolute deviation (MADN) are used [12, 9]. The
constant c should be chosen greater or equal to 2 which en-
sures to detect all QRS complexes. The choice of c depends
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Fig. 6. Threshold calculation illustrated for d5(n).

on the prior knowledge of the amount of impulsive noise
in the data. If it is likely that there is almost no impulsive
noise in the data, c can be chosen greater than 2.5. In case of
impulsive noise 2 ≤ c ≤ 2.5 is recommended. The choice
of segment length should provide that each segment contains
roughly one QRS complex. Since the typical resting heart
rate for adults is 60-90 beats per minute, we choose a seg-
ment length of 1 second. If z(n) ≥ TQRS, a QRS complex is
detected. Hence, we get the QRS positions and set all coeffi-
cients in w1(n), w2(n) and w3(n) at these positions to zero.
In a small number of cases, two or zero QRS complexes may
occur in one segment. However, the robust location and scale
estimates in the calculation of TQRS can easily deal with this.
Now we are able to separate the outliers from the clean signal
by thresholding. The threshold calculation is explained in the
following section.

2.3. Threshold Calculation
We calculate an upper and a lower threshold for all coef-
ficient sequences to separate the outliers from the original
ECG signal. For this, we split each sequence into segments
analogous to Section 2.2. Then we calculate the maximum
and minimum of each segment. With this procedure we ob-
tain several maxima and minima of each sequence. From
this set, we define cmax = µ̂(maxima) + σ̂(maxima) and
cmin = µ̂(minima) − σ̂(minima). Again, robust estimates
for the mean µ and the scale σ are used. Then, the upper
threshold Tu is given by the largest maxima, which is below
cmax. Accordingly, the lower threshold Tl is the smallest min-
ima above cmin. To illustrate the threshold calculation, Figure
6 depicts the example of the coefficient sequence d5(n) and
displays the edges of the segments, cmax, cmin, Tu and Tl.

2.4. Thresholding and Inverse SWT (ISWT)
After calculating the thresholds for each stage, we perform
hard thresholding to obtain a representation of the outlier sig-
nal in the wavelet domain, which is given by the following
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Fig. 7. The multi-resolution thresholding algorithm
gives ŝoutlier(n) (middle), which is substracted from the
srecorded(n) (top) to obtain the cleaned signal ŝcleaned(n)
(bottom).

equations:

ŵ∗

s(n) =











ws(n), if ds(n) > Ts,u

ws(n), if ds(n) < Ts,l

0, otherwise.
and

d̂∗M (n) =











dM (n), if dM (n) > Td,u

dM (n), if dM (n) < Td,l

0, otherwise

Computing ISWT using the coefficient sequences of the out-
liers yields ŝoutliers(n). The cleaned ECG signal ŝcleaned(n)
is computed by using Eq. (1). The result is shown in Figure
7, where the recorded ECG, the estimated outlier signal and
the cleaned ECG are displayed. The motion induced artifact
and the impulsive noise are almost completely canceled out.

3. RESULTS

All datasets and algorithms are available at www.spg.tu-
darmstadt.de/res/dl/. As discussed in the previous sections,
we use the following parameters: Haar wavelet and M = 5
stages for the SWT, segment length = 1 second and c = 2
to calculate TQRS . To illustrate the performance of the
method, we compared our method with the algorithm pro-
posed by Li and Lin [3]. For this, we used a method proposed
by McSharry et al. in [13] to generate synthetic ECG sig-
nals. The model generates an ECG with a time-varying
amplitude of the R peak equal approximately to 1 and al-
lows to vary the ECG characteristics such as heart rate and
LF/HF ratio. Synthetic motion artifacts are modeled by
an additive patchy outlier model using a moving average
(MA) process driven by impulsive noise which is defined by
v(n) = b0ṽ(n) + b1ṽ(n − 1) + . . . + bqṽ(n − q), where q
is the order of the MA process. The sequence ṽ(n) is given
by ṽ(n) ∼ (1 − ε)δ0 + εN (0,σ2

v), δ0 is a point mass distri-
bution located at zero and N (0,σ2

v) is a zero mean Gaussian

with variance σ2
v . The parameter ε denotes the probability

of an outlier to occur and σ2
v represents the impulsiveness of

the outliers. We set ε = 0.05 and σv = 1. {b0, b1, . . . , bq}
determines the temporal structure (shape) of the outliers. For
the simulation we choose a parabola, which resembles typical
motion induced artifacts. The length of the outlier blocks
varies randomly from 0.1s to 1.5s. We performed a Monte
Carlo simulation, where we generated 1000 different syn-
thetic ECG signals, which were then disturbed with motion
artifacts. To compare the results of our method and Li and
Lin [3], we calculated the mean square error (MSE) between
the signals corrupted with outliers and the original ECGs.
We did the same with the cleaned signals using both algo-
rithms. In the following table the average MSEs are given:

Uncleaned Li and Lin Multi-res. thres.
av. MSE 0.0134 0.0141 0.0025

The results confirm the statement in Section 1, that the opti-
mal de-noising algorithm by Li and Lin is not able to reduce
motion induced artifacts. Our proposed algorithm reduces the
average MSE by a factor of 5.36. The increase of the average
MSE by using Li and Lin can be explained, by the fact that
the method reduces the peaks of the signals. Additionally,
we considered real ECG data to evaluate our algorithm. For
this, we selected 19 recordings of 1minute duration which do
not contain outliers from the MIT-BIH Arrhythmia Database.
We corrupted them with the synthetic patchy outliers with the
same parameters as in the previous case except for σ = 350,
which had to be adjusted to the amplitudes of the database.
For all recordings, we performed a Monte Carlo simulation
with 100 iterations. The average MSE for the corrupted sig-
nals is 3033.4 and for the cleaned signals it is 467.6, which
results in a reduction factor of 6.49. In a further study, we
used real motion artifacts obtained from the MIT-BIH Noise
Stress Test Database. From this database we chose 6 artifacts
and corrupted each of the 19 recordings with each of the 6
artifacts. Then again the MSEs were calculated. This results
in an average MSE of 1384.2 for the corrupted signals and
479.48 for the cleaned signals. Hence, the average MSE is
reduced by a factor of 2.89. These studies show that our al-
gorithm deals very well not only with normal ECGs but also
with ECGs containing heart arrhythmias. In addition to the
MSE studies, we evaluated our algorithm by visual examina-
tion of real ECG signals, which we recorded at our lab. Here,
two examples are shown. Figure 7 depicts the result of the
proposed algorithm for the signal displayed in Figure 1. It
is clear to see that the oscillating noise is suppressed and the
movement artifact is canceled out. Also the non-corrupted
parts are nearly untouched. However, the T wave at n ≈ 625
could not be reconstructed. Figure 8 illustrates how the pro-
posed method handles a slow movement, which results in a
large patch of outliers. The method handles this situation very
well. All QRS complexes are recovered, the T waves are vis-
ible and the baseline is corrected as well. To assess the gain
of our method as a preprocessing step for R peak detection,
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Fig. 8. ECG with artifact from slow movement of the arm
(red) and cleaned ECG signal (black).

we used the method proposed in [14] on the data given by the
19 recordings and synthetic motion artifacts. The average de-
tection and false alarm rates are shown in the following table:

Av. detection rate Av. false alarm rate
Corrupted ECGs 99.49% 4.03%
Clean ECGs 99.53% 0.1%

We see the detection rate is not much influenced by the out-
liers, hence there is no difference between the ECGs with
outliers and the cleaned ECGs. However, due to the out-
liers some false alarms occur which are omitted by using our
method. This shows that our algorithm is useful as prepro-
cessing tool to enhance ECG analysis.

4. CONCLUSION

A new method to detect and to remove outliers in ECG data
generated by movement of the patient has been introduced.
It is able to recover corrupted QRS complexes and removes
temporary baseline shifts. In addition, it suppresses impul-
sive noise. We also showed that our algorithm can improve
R peak detection methods which emphasizes its applicabil-
ity as a preprocessing tool in automated ECG analysis. The
suggested method is an effective, robust, consistent and com-
putationally cheap algorithm which does not require training
data and works fully automatic and independent of the spe-
cific subject. Additionally, the adaption to a real-time system
is possible. Hence, in the future, this method could be used in
portable recording devices. Future and ongoing work include
a multi-resolution modeling algorithm, which uses a differ-
ent mother wavelet to generate wavelet coefficient sequences,
which have a structure that is suitable for model-based outlier
detection and signal reconstruction.
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