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ABSTRACT

The coherence spectrum is of notable interest as a bivariate

spectral measure in a variety of application, and the topic has

lately attracted notable interest with the recent formulation

of several high-resolution data adaptive estimators. In this

work, we present computationally efficient time recursive im-

plementations of the recent iterative adaptive approach (IAA)

estimator, examining both the case of complete data sets and

when some observations are missing. The algorithms con-

tinues the recent development of exploiting the estimators’

inherently low displacement rank of the necessary products

of Toeplitz-like matrices, extending these to time-updating

formulations for the IAA-based coherence estimation algo-

rithm. Numerical simulations together with theoretical com-

plexity measures illustrate the performance of the proposed

algorithm.

Index Terms— Coherence spectrum, data adaptive esti-

mators, efficient algorithms

1. INTRODUCTION

Finding accurate coherence estimates between various forms

of signals is of interest in a wide variety of applications,

such as speech processing, time series analysis, geophysics,

biomedical engineering, and synthetic aperture radar imag-

ing. The topic has lately attracted renewed interest with the

proposal of the non-parametric data-dependent Capon-based

magnitude squared coherence (MSC) estimator proposed

in [1], and then further explored in [2–4]. The one- and

two-dimensional (2-D) Capon and APES-based approaches

introduced in [1,2] show that these estimators allow for proper

high-resolution MSC estimates, by forming data-adaptive fil-

ter banks, with each filter being constrained to pass its center

frequency undistorted while suppressing the contribution of

all other components. In [4], this work was further extended

to allow for non-uniformly sampled data by exploiting a for-

mulation based on the recent Iterative Adaptive Approach
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(IAA) [5, 6] . The resulting IAA-based MSC algorithm, as

well as a segmented version termed SIAA-MSC, was there

shown to yield reliable estimates even if a large proportion

of the measurements are missing, albeit with the drawback of

being computationally cumbersome. To alleviate this prob-

lem, we recently developed efficient implementations for

the batch formulations of the IAA-based MSC algorithms,

making use of the inherently low displacement rank of the

necessary products of Toeplitz-like matrices, thereby allow-

ing for the development of appropriate Gohberg-Semencul

(GS) representations of these matrices [7, 8]. In this paper,

we further this development by proposing also time-recursive
formulations of the IAA-based MSC estimator for both the

complete and missing data cases.

2. TIME-RECURSIVE IAA-MSC ESTIMATION

Let x1,n and x2,n, for n = 0, 1, . . . N , represent two complex

valued data sequences under consideration for which subsets

of length L may be assumed to be reasonably stationary.

These subsets may be expressed as

x
(i)
L (n) =

[
xi(n) xi(n+ 1) . . . xi(n+ L− 1)

]T
(1)

for i = 1, 2. The here proposed time-recursive IAA-based

MSC (IAA-MSC) estimate is then formed over a sliding win-

dow of the L most recent samples of each sequence, with the

corresponding coherence spectrum being defined as

γ2
x1x2

(ω) =
|Sx1x2(ω)|2

Sx1
(ω)Sx2

(ω)
(2)

where Sx1x2
(ω) denotes the cross-spectral density between

x
(1)
L (n) and x

(2)
L (n), whereas Sx1(ω) and Sx2(ω) denote the

spectral densities for the respective subsets of signals. The

IAA-MSC of the measurement subsets is then formed as [7,8]

γ2
x1x2,n(ω) =

∣∣∣fHL (ω)PL(n)fL(ω)
∣∣∣2

∏2
i=1

(
fHL (ω)[R

(i)
L (n)]−1fL(ω)

) (3)
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where R
(i)
L (n) and R

(12)
L (n) denote the covariance and cross-

covariance matrices of x
(i)
L (n), for i = 1, 2, defined as

R
(i)
L (n) = E

[
x
(i)
L (n)x

(i)H
L (n)

]
(4)

R
(12)
L (n) = E

[
x
(1)
L (n)x

(2)H
L (n)

]
(5)

with E [·] denoting expectation, and

fL(ω) =
[
1 ejω . . . ej(L−1)ω

]T
(6)

PL(n) �
[
R

(1)
L (n)

]−1

R
(12)
L (n)

[
R

(2)
L (n)

]−1

(7)

Here, (·)T and (·)H denote the transpose and the conjugate

transpose, respectively. To estimate the covariance and cross-

covariance matrices, the IAA-based covariance estimate is

formed by iteratively computing [7, 8]

α(i)
n (ωk) =

fHL (ωk)[R
(i)
L (n)]−1x

(i)
L (n)

fHL (ωk)[R
(i)
L (n)]−1fL(ωk)

� ψ
(i)
n (ωk)

ϕ
(i)
n (ωk)

(8)

R
(i)
L (n) =

K−1∑
k=0

|α(i)
n (ωk)|2fL(ωk)f

H
L (ωk) (9)

until practical convergence, for ωk = 2π(k/K), k =

0, 1, . . . ,K − 1, where K > L , with R
(i)
L (n) initialized

to the identity matrix, IL. Upon convergence, the cross-

covariance matrix is then estimated using

R
(12)
L (n) =

K−1∑
k=0

(
α(1)
n (ωk)

)∗
α(2)
n (ωk)fL(ωk)f

H
L (ωk)

(10)

where (·)∗ denotes the complex conjugate. Finally, the IAA-

MSC for the current data subsets is estimated via (3). Thus,

to form the brute-force time-updating, the subsets are then

updated, and the entire estimation process repeated, for each

time update, clearly being a quite inefficient implementation,

with large amounts of redundant calculations. To alleviate

this, we now proceed with examining how the estimates may

be formed in a time-recursive manner, exploiting the inherent

structure of the estimates.

2.1. Efficient Time-Recursive Implementation

To form the time-recursive IAA-based MSC estimation

scheme for the complete data case, one may instead express

(3) through the use of trigonometric polynomials as

γ2
x1x2,n(ωk) =

|ϕ(12)
n (ωk)|2

ϕ
(1)
n (ωk)ϕ

(2)
n (ω)

(11)

where ϕ
(1)
n (ωk) and ϕ

(2)
n (ωk) are defined as in (8), and with

ϕ(12)
n (ωk) � fHL (ωk)PL(n)fL(ωk) (12)

Here, and in the following, n indicates matrices and products

estimated for the current subset of data, as opposed to previ-

ous (n− 1) and next (n+ 1) subsets or windows of data. It is

further noted that the (Hermitian Toeplitz) covariance matri-

ces and the (Toeplitz) cross-covariance matrix allow for a low

rank displacement representation via the GS factorization of

the [R
(i)
L (n)]−1 and PL(n) matrices [7, 8]. Indeed, the well

known GS representation of the inverse covariance matrix re-

sults in [9]

[R
(i)
L (n)]−1 =

2∑
�=1

σ�L
(
t�,iL (n)

)
LH

(
t�,iL (n)

)
(13)

where σ1 = 1 and σ2 = −1, with L (ξξξL) denoting a

L × L lower triangular Toeplitz matrix with ξξξL along its

first column, whereas t1,iL (n) � â
(i)
L (n) and t2,iL (n) �

ZLJLâ
(i)∗
L (n), with ZL and JL denoting the down-shift and

the exchange matrix respectively, and with â
(i)
L (n) denoting

the power normalized forward predictor defined as

â
(i)
L (n) = a

(i)
L (n)

√
a
(i)T
L (n)eL (14)

a
(i)
L (n) � [R

(i)
L (n)]−1eL (15)

with eL denoting the unity vector eL � [1 0 . . . 0]T . Due

to the Toeplitz structure of R
(i)
L (n), (15) may be solved effi-

ciently using the celebrated Levinson-Durbin (LD) algorithm,

whereas the first column of each matrix can be computed from

the relevant spectra as is dictated by (9) at low cost using a

Toeplitz to circulant embedding approach and the Fast Fourier

Transform (FFT), as detailed in [10]. Given the GS repre-

sentation in (13), the coefficients of the associated trigono-

metric polynomials ϕ
(i)
n (ω), appearing in the denominator

of (8) as well as in (11), may be efficiently computed and

evaluated on the frequencies of interest, ωk, using operations

that can be implemented using the FFT [10–12], resulting in

an efficient implementation of (8) and (9), requiring about

L2 + 12φ(2L) + 3φ(K) operations, where φ(N) denotes the

complexity of forming the FFT of length N . Furthermore, the

trigonometric polynomial ϕ
(12)
n (ωk), defined in (12), can be

computed efficiently. Given (13) and the fact that R
(12)
L (n) is

Toeplitz, a GS representation of (7) may be formed as [7]

PL(n) =

4∑
�=1

σP
� L

(
υυυ�,i
L (n)

)
LH

(
z�,i
L (n)

)
(16)

with the auxiliary variables defined in Table 1, where υυυ1
L(n) =

â
(1)
L (n), z1

L(n) = c
(12)
L (n), υυυ2

L(n) = d
(2)
L (n), z2

L(n) =

â
(2)
L (n), υυυ3

L = ZLJLâ
(1)∗
L (n), z3

L(n) = ZNc
(12)
L (n),

υυυ4
L(n) = ZLc

(2)
L (n), z4

L(n) = ZLJLâ
(2)∗
L (n), and σP

1 =
σP
2 = 1 and σP

3 = σP
4 = −1. Given this GS factorization,

the coefficients of the associated polynomial in (12) may be

efficiently computed using the FFT as detailed in [13], at a
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complexity of no more than 18φ(2L) operations, whereas the

computational cost for computing the variables that appear in

Table 1 using fast Toeplitz vector multiplication methods re-

quires no more than 40φ(2L) operations. The time-recursive

scheme developed thus far comprises two distinct steps,

namely the estimation of the covariance and cross covari-

ance sequences of the two signals of interest using a fast

implementation of the IAA algorithm by iterating until con-

vergence (8) and (9), with convergence usually being reached

after 10-15 steps [5], followed by the computation of (12)

and subsequently of (11) using fast trigonometric polynomial

evaluation techniques based on the GS representation of the

Toeplitz-like matrices associated with the pertinent polyno-

mials. Interestingly, one may reduce the complexity even

further by allowing for an approximate solution, noting that

due to the sliding time windowing of the data formulation in

(1), upon convergence, R
(i)
L (n) ≈ R

(i)
L (n − 1), suggesting

that an approximate solution may be found by applying a sin-

gle IAA iteration, simply using the estimate of R
(i)
L (n− 1) at

time index (n− 1) for the initialization of the IAA algorithm

in (8) and (9) at the successive time index n, as opposed to

the initialization of R
(i)
L (n) by the identity matrix IL sug-

gested by the original IAA algorithm. Finally, in an attempt

to reduce the variance of the IAA-MSC estimates a reduced

size IAA-MSC estimator may be formed by using a smaller

fraction, LR, of the full sized cross-correlation sequence for

the computation of (7) and (12), such that [4, 7]

ϕ(12)
n (ω) � fTLR

(ω)PLR
(n)f∗LR

(ω), (17)

PLR
(n) � [R

(1)
LR

(n)]−1R
(12)
LR

(n)[R
(2)
LR

(n)]−1 (18)

with LR ≤ L, while keeping ϕ
(1)
n (ω) and ϕ

((2)
n (ω) as origi-

nally defined in (8). Due to the order recursive structure of the

LD algorithm, lower order GS factorizations are produced at

no extra cost. Moreover, the computation of the displacement

of PNR
required for the efficient computation of (18) is in

this case lower than that of original full order approach. It is

worth noticing that the auto- and cross-correlation sequences

of the input signals are still estimated using the full order

IAA algorithms. We term the resulting approximate scheme

the time-recursive IAA-MSC (TR-IAA MSC) algorithm. The

computational complexity of the proposed implementation is

approximately CTR−IAA
MSC ≈ 2L2 + 12φ(2L) + 58φ(2LR) +

7φ(K) operations, which is a major improvement over the

O(L3 +L2K) operations required by the direct implementa-

tion of (3)-(10).

2.2. Time Recursive QN-IAA MSC estimation

Exploiting the ideas in [14], further substantial computational

savings can be achieved by instead using the there proposed

approximative IAA algorithm for the estimation of the co-

variance and the cross covariance sequences required for the

computation of the MSC, where the inverse of Toeplitz-like

Table 1. Auxiliary variables required for the displacement

representation of PL(n).

β(n) = â
(1)T
L (n)JLR

(12)
L (n)JLâ

(2)∗
L (n)

c
(1)
L (n) =

[
[R

(2)
L−1(n)]

−1 0
0T 0

]
R

(12)H
L (n)JLâ

(1)∗
L (n)

c
(2)
L (n) =

[
[R

(1)
L−1(n)]

−1 0
0T 0

]
R

(12)
L (n)JLâ

(2)∗
L (n)

c
(12)
L (n) = c

(1)
L (n) + JLâ

(2)∗
L (n)β∗(n)

δ(n) = â
(1)H
L (n)R

(12)
L (n)â

(2)
L (n)

d
(1)
L (n) =

[
0 0T

0 [R
(2)
L−1(n)]

−1

]
R

(12)H
L (n)â

(1)
L (n)

d
(2)
L (n) =

[
0 0T

0 [R
(1)
L−1(n)]

−1

]
R

(12)
L (n)â

(2)
L (n)

d
(12)
L (n) = d

(1)
L + â

(2)
L (n)δ∗(n)

matrices are approximated by extrapolating the inverse of a

lower sized matrix, treated as it have been associated with

an autoregressive (AR) model of lower order M ≤ L (see

also [15]). Thus, instead of computing [R
(i)
L (n)]−1, a low or-

der extrapolated estimate is adopted by iteratively estimating

α
(i)
n (ωk) and Q

(i)
L (n) in place of [R

(i)
L (n)]−1 as

α(i)
n (ωk) =

fHL (ωk)Q
(i)
L (n)x

(i)
L (n)

fHL (ωk)Q
(i)
L (n)fL(ωk)

, (19)

R
(i)
M (n) =

K−1∑
k=0

|α(i)
n (ωk)|2fM (ωk)f

H
M (ωk) (20)

until practical convergence, where

Q
(i)
L (n) =

[
0 0T

0 [R
(i)
M ]−1

]
+A

(i)
L,L−M (n)A

(i)H
L,L−M (n)

with

A
(i)
L,L−M (n) �

[
ZLā

(i)
L (n) . . .ZL−M

L ā
(i)
L (n)

]
,

whereas

ā
(i)
L (n) = [â

(i)T
M (n) 0T

L−M ]T

and where R
(i)
M (n) is the auto correlation matrix of order M .

Using M � L, a significant computation reduction can then

be achieved, at the expense of a minor degradation in the qual-

ity of the resulting spectrum estimate. The LD algorithm is

subsequently employed for the computation of the generators

of [R
(i)
M ]−1. Due to the special structure of Q

(i)
N , the required

matrix vector products can be computed using FFT based

schemes. We denote the resulting time recursive approxima-

tive algorithm the TR-QN-IAA MSC algorithm. The over-

all complexity of this approach is roughly CTR−QN−IAA
MSC ≈
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Fig. 1. Spectrogram estimates of the two examined signal.

2M2+10φ(N)+12φ(2M)+58φ(2LR)+7φ(K), being sub-

stantially lower than what is required by the TR-IAA MSC,

especially when M � L.

3. MSC ESTIMATION IN THE MISSING DATA CASE

The time-recursive estimators presented so far have been de-

signed for evenly sampled data. However, in a wide range

of applications the measured data could be unevenly sam-

pled, or might suffer from lost samples, here referred to as

the missing samples MSC estimation case. By extending the

algorithms presented above and utilizing the work presented

in [10], where efficient batch processing implementation of

IAA spectral estimation in the case when some data are not

available have been proposed, we proceed to formulate a fast

time-recursive IAA-MSC method for case when input data

sets contain missing data samples at arbitrarily (but known)

selected positions. Denote the vectors of the available data at

time instant n

x
(i)
Li

g(n)
(n) = SLi

g(n),L
x
(i)
L (n) (21)

for i = 1, 2, where SLi
g(n),L

are time varying selection matri-

ces with zeros and ones in proper places, of time varying di-

mensions Li
g(n)×L, where SLi

g(n),L
S
(i)T
Li

g(n),L
= ILi

g(n)
, with

Li
g(n) ≤ L denoting the number of the available data samples

in x
(i)
L (n). Defining the frequency vector accordingly as

fLi
g(n)

(ωk) = SLi
g(n),L

fL(ωk),

the missing data IAA (MIAA) spectral estimation algorithm

may then form by iterating

α(i)
n (ωk) =

fHLi
g(n)

(ωk)[R
(i)
Li

g(n)
(n)]−1x

(i)
Li

g(n)
(n)

fHLi
g(n)

(ωk)[R
(i)
Li

g(n)
(n)]−1fLi

g(n)
(ωk)

R
(i)
Li

g(n)
(n) =

K−1∑
k=0

|α(i)
n (ωk)|2fLi

g(n)
(ωk)f

H
Li

g(n)
(ωk)

until practical convergence, with R
(i)
Li

g(n)
(n) initialized by the
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Fig. 2. The evolution of the MSC estimates as well as snap-

shots of the MSC estimates at time instant n = 16000 for the

(a,b) TR-IAA MSC, (c,d) the TR-QN-IAA MSC, and (e,f) the

TR-MIAA MSC estimates.

identity matrix. Fast implementations of the MIAA algorithm

have been proposed for the batch case in [10, 16], exploiting

that the relevant auto-correlation matrices may be extracted

from the corresponding full size counterparts, which for the

case of time varying processing considered in this work, takes

the form

R
(i)
Li

g(n)
= SLi

g(n),L
R

(i)
L (n)ST

Li
g(n),L

, (22)

whereas R
(i)
L (n) is estimated using (9) as if it had been asso-

ciated with the full data case. A time recursive scheme can

thus be constructed using the estimate of R
(i)
L (n− 1) at time

index (n− 1) for the initialization of the MIAA algorithm at

the successive time index n. As a by product, the MIAA algo-

rithm is capable of producing, at each time instant, estimates

for the full sized correlation matrices, which in conjunction

with (10) and (7) are utilized further for the MSC estimation,

eventually implemented efficiently as discussed above, result-
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ing in a time recursive algorithm, hereafter termed the time re-
cursive MIAA based MSC estimator (TR-MIAA MSC), which

can be implemented at a cost of approximately CTR−MIAA
MSC ≈(

L1
g(n)

)3
+
(
L2
g(n)

)3
+ 58φ(2LR) + 7φ(K) operations.

4. NUMERICAL EXAMPLES

In order to evaluate the performance of the proposed algo-

rithms, we examine two time-varying signals consisting of

mixtures of complex sinusoids corrupted by additive zero-

mean complex Gaussian noise. The first of these signals is

composed by two complex sinusoids of abruptly changing

frequencies and a complex valued linear chirp with descend-

ing/ascending linear frequency variation, whereas the second

signal is composed by complex sinusoids of abruptly chang-

ing frequencies (see [11] for a more detailed description of

these signals). The amplitude of each signal component is set

equal to one, and the phase is selected randomly. The signal-

to-noise ratio (SNR) is set to 20 dB. The spectrogram of each

of signals, estimated by means of the TR-IAA algorithm is

depicted in Fig. 1 (a) and (b). The MSC estimate obtained us-

ing the proposed TR-IAA MSC is depicted in Fig. 2 (a), with

parameters set at values L = 128, LR = 32 and K = 1000.

The TR-QN-IAA MSC estimate is shown in Fig. 2 (c), where

the additional parameter is set equal to M = 32. We proceed

to examine the performance of the proposed TR-MIAA MSC

estimate in the missing data case, by randomly (with a uni-

form distribution) omitting 70% and 75% samples for each

input signal, x1,n and x2,n, respectively, where, as shown in

Fig. 2 (e), despite the heavy data loss, the proposed method

succeed in obtaining MSC estimates similar to those obtained

in the full data case. Finally, snapshots of the MSC estimates

at time instant n = 16000 are shown in Fig. 2 (b), (d) and

(f) for the TR-IAA MSC, the TR-QN-IAA MSC and the TR-

MIAA MSC method, respectively, indicating the difference

in performance between the different approximations.
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