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ABSTRACT
We present a least squares based allpass filter design with a
prescribed maximum pole magnitude constraint suitable for
photonic systems. The constraint comes from the physical
limitations of realizing digital filters using photonic compo-
nents, and must be addressed in the designing phase. We de-
velop our design algorithm following the eigenfilter approach
for allpass filters. The constraint is formulated using the Ar-
gument Principle and modified to match the eigenfilter objec-
tive function. An iterative approach is then employed to ob-
tain the filter coefficients that best satisfy both the objective
function and the constraint. Our algorithm will be ideal for
yielding allpass filters suitable for narrowband designs that
are common to the optical domain. Examples relevant to fil-
tering in the optical frequency range are subsequently demon-
strated. Physical origins of the pole magnitude constraints are
also briefly explained.

Index Terms— allpass filter, photonic filter design, con-
strained filter design, eigenfilter, narrowband filter

1. INTRODUCTION

Designing filters for photonic systems has become an attrac-
tive topic in recent years due to a renewed interest in signal
processing for optical communications. The research area of
photonic integrated circuits has been receiving a high level
of attention as modern electrical communications systems are
strained by heavy bandwidth demands [1, 2]. Optical signal
processors not only demonstrate superiority in bandwidth, but
also exhibit advantages in terms of resilience to electromag-
netic interference, and to transmission loss [3].

The development in photonic circuits subsequently opens
up new areas for signal processing research. In this paper,
we focus on Discrete Time Coherent Optical Proccesing (DT-
COP) [3]. In the DTCOP scheme, a radio frequency signal
(RF) in the GHz range is imposed on an optical carrier with
an operational frequency near 100THz. In a photonic system
that employs the DTOP scheme, filtering operations must be
carried out in the optical domain. Such basic operation re-
quirements in a photonic system translate into a stringent re-
quirement for signal processing designs. A center frequency
in the THz frequency range along with the typical MHz band-
width allocations in optical communication setups imply that
the filtering operations are narrowband.

A narrowband filter is difficult to design because it will
not only require a high filter order, but also poles extremely
close to the unit circle–a characteristic highly undesirable in
traditional digital signal processing research. A pole with
magnitude close to unity implies that the system may demon-
strate stability issues under the finite word length effect,
which has been the subject of many research papers [4]. A
photonic system has similar constraints because the pole mag-
nitudes directly relate to the feasibility of realizing the filter
using optical components. Photonic systems are constituted
of basic building elements realized using nanoscale dielec-
tric waveguides and resonators. The maximum component
values for these devices are limited by current fabrication
capabilities. Therefore, a constrained approach to designing
narrowband filters must be devised.

Allpass filters are critical in creating realizable photonic
systems. While a narrowband lowpass filter can be designed
directly, we instead consider a lowpass filter of the form [5]

H(z) =
1

2
(A1(z) +A2(z)) (1)

where A1(z) and A2(z) are two allpass filters. The design
works by creating different phase profiles for the two allpass
filters in desired frequency ranges. Being able to realize fre-
quency selective filters using purely allpass substructures is
highly beneficial in photonic applications. While a frequency
selective filter can be directly mapped to various nanoscale
photonic elements, a design based on allpass filters can keep
power consumption and power dissipation at minimum level.
A photonic allpass does not intrinsically attenuate the opti-
cal signal, and therefore does not require additional amplifi-
cation. Realizable photonic allpass filters such as the Bragg
mirror topology [6] have been proven to be an excellent build-
ing block for various optical communication schemes [7].

Although constrained frequency selective filters algo-
rithms exist [8, 9], allpass designs with constraints are scarce.
While constrained allpass design algorithm has been pre-
sented in the minimax sense [10], a well defined least squares
(LS) approach still does not exist. We demonstrate in this
paper a LS algorithm with pole magnitude constraints that
is able to generate allpass designs suitable for generalized
photonic filtering needs. We derive the constraint based on
the Argument Principle, following the works shown in [8, 9],
and reformulate the objective function for an allpass design.
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The rest of the paper is organized as follows: Section 2
discusses the chracteristics of an allpass filter, and its realiza-
tion using the Bragg mirror topology. Section 3 reviews the
eigenfilter design approach for allpass filters first presented
in [11]. The details for the formulation of the pole magni-
tude constraint are shown in Section 4. Section 5 presents the
modified eigenfilter allpass design problem with maximum
pole magnitude limitations. Section 6 demonstrates example
designs suitable for optical communications, and Section 7
concludes the paper.

2. ALLPASS FILTERS

An allpass filter describes a system that exhibits no attenua-
tion in the magnitude for all frequencies, but alters the phase
of the input signal according to a prescribed profile. The
transfer function for an N -th order allpass filter with real co-
efficients can be written as

A(z) =
aN + aN−1z

−1 + · · ·+ a1z
−(N−1) + a0z

−N

a0 + a1z−1 + · · · aN−1z−(N−1) + aNz−N

= z−N
D(z−1)

D(z)
(2)

The allpass filter is highly suitable for physical realization us-
ing optical components because it can be easily modularized
through a cascade or lattice of first order sections. A first or-
der allpass filter can be realized using a variety of nanoscale
photonic elements, one of which is the Bragg Mirror topology
shown in Figure 1.

Fig. 1: First order allpass realization using a Bragg mirror
topology. The optical path length is represented by L, s is the
phase delay of the unit, and ρ is the reflection coefficient.

The unit cell consists of two Bragg mirrors shown in Fig-
ure 2(a) as its primary elements, one with amplitude reflection
coefficient ρ, and one with perfect reflection. The waveguide
section between the two reflectors creates a phase shift of ejs

on the input. The traversal time of the waveguide loop serves
as the discrete delay element z−1, and is directly related to
the optical path length L.

Under ideal fabrication conditions, the transfer function
of the Bragg mirror topology is

AB(z) = ejs
ρe−js − z−1

1− ρejsz−1
(3)

which directly matches the form of a first order allpass fil-
ter. Individual sections of this unit cell can then be stitched
together to form higher order allpass systems. In real world

(a) Top-down image of a Bragg mir-
ror waveguide created by introduc-
ing periodic perturbation.

(b) Perspective image showing the
roughness of the waveguide side
wall–one of the sources of loss.

Fig. 2: Waveguide SEM images.

fabrication, however, the performance of the filter is degener-
ated by the waveguide loss α, which arises from factors such
as roughness of the sidewall, as shown in Figure 2(b). The
actual transfer function of the Bragg mirrors topology is

AB(z) = ejs
ρe−js − αz−1

1− αρejsz−1
(4)

It is immediately evident that the maximum realizable pole
magnitude is determined by the quantity αρ. Both parameters
are governed by the fabrication capabilities, and it is expected
that αρ as high as 0.97 should be realizable with current tech-
nology [12]. It should be also noted that with the introduction
of α, the transfer function AB(z) deviates from the profile of
an ideal allpass filter. However, with existing low loss waveg-
uides, the effect is minimal and is neglected in this paper.

3. EIGENFILTER APPROACH

The eigenfilter approach, originally introduced in [11], is
a powerful design technique for allpass filters in the least
squares (LS) sense. The design starts by formulating the
phase response of the allpass filter from (2)

ΘA(ω) = −Nω + 2 arctan

∑N
k=0 ak sin kω∑N
k=0 ak cos kω

= −Nω + 2 arctan
aTs(ω)

aTc(ω)
(5)

where a is the column vector containing the allpass filter co-
efficients, and

s(ω) =
[
0 sinω sin 2ω · · · sinNω

]T
(6)

c(ω) =
[
0 cosω cos 2ω · · · cosNω

]T
(7)

Given a desired phase response Θd(ω) The objective function
in the eigenfilter design is then

EEF =

∫
R

W (ω)|Θd(ω)−ΘA(ω)|2dω (8)

where R is the frequency ranges of interest, and W (ω) is a
weighing function. Through trigonometric manipulation, the
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objective function can be rewritten as

EEF =

∫
R

W (ω)

∣∣∣∣2 arctan
aTsβ(ω)

aTcβ(ω)

∣∣∣∣2 dω (9)

where

sβ(ω) =
[
sinβ(ω) · · · sin (β(ω)−Nω)

]T
(10)

cβ(ω) =
[
cosβ(ω) · · · cos (β(ω)−Nω)

]T
(11)

with β(ω) = 1
2 (Θd(ω)+Nω). Using Taylor series expansion

on arctan, and keeping only the first term, we arrive at

EEF ≈ 4

∫
R

W (ω)
aTSβ(ω)a

aTCβ(ω)a
dω (12)

where Sβ(ω) = sβ(ω)sβ(ω)T, Cβ(ω) = cβ(ω)cβ(ω)T. To
obtain a closed form solution, an iterative approach is used by
modifying EEF to

E
(i)
EF ≈ a(i)T

(
4

∫
R

W (ω)
Sβ(ω)

a(i−1)TCβ(ω)a(i−1) dω

)
a(i)

= a(i)TP(i−1)a(i) (13)

The approach here is to use aTCβ(ω)a from the previous
iteration as a weight in the current step. To solve for a(i), we
note that the setup in each iteration is an optimization problem
of the form

minimize
a(i)

a(i)TP(i−1)a(i)

subject to a(i)Ta(i) = 1
(14)

where the constraint a(i)Ta(i) = 1 is enforced to avoid the
null solution. The objective matrix P(i−1) is real valued,
symmetric and positive definite. According to the Rayleigh
principle [13], the vector a(i) that minimizes the objective
function can be readily found by solving for the eigenvector
corresponding to the minimum eigenvalue of P(i−1). Note
that while an optimal allpass filter coefficient vector aopt can
then be found through iteration, the eigenfilter approach con-
tains no restriction on the magnitude of the poles. We must
therefore modify the approach to include the constraint for
designs that are realizable using photonic components.

4. CONSTRAINT SETUP

To properly formulate the constraint on the maximum pole
magnitudes, we use the setup based on the Argument Princi-
ple [14] following the approaches shown in [8, 9]. The Argu-
ment Principle states that for a function D̂(z) that is differen-
tiable inside a contour C except at a number of singularities,
the following condition is satisfied

Nz −Np =
1

2πj

∮
C

D̂′(z)

D̂(z)
dz (15)

where Nz is the number of zeros of the function inside re-
gion C, and Np is the number of poles. The contour C in

our setup is a circle defined by the maximum allowable pole
radius rmax. The maximum radius is directly related to the
quantity αρ from the manufacturable component values of
a photonic allpass filter. Notice that as long as the roots of
D(z) =

∑N
k=0 akz

−k in (2) are within a circle prescribed by
rmax, the entire allpass filter will be realizable using photonic
components such as the Bragg mirror topology. We can di-
rectly translate this information into the Argument Principle
by relating the function D̂(z) to the backward path transfer
function of the allpass filter

D̂(z) = zND(z) =

N∑
k=0

akz
N−k (16)

This formulation of D̂(z) contains the exact same root loca-
tions as D(z), but will help in managing the constants in the
Argument Principle setup. To properly derive the constraint,
we start by rearranging the contour integral∮

C

D̂′(z)

D̂(z)
dz =

∮
C
d ln D̂(rejω) (17)

Decomposing into magnitude and phase yields∮
C
d ln D̂(rejω) =

∮
C
d ln |D̂(rejω)|

+j

∮
C
dargD̂(rejω) (18)

Since we are interested in real coefficient filters, the magni-
tude response of D̂(z) is even, making

∮
C d ln |D̂(rejω)| a

closed contour integral of an odd function. The first term van-
ishes to zero, and we have∮

C

D̂′(z)

D̂(z)
dz = j

∫ 2π

0

d

dω
argD̂(rejω)dω (19)

Based on the setup, we require that Nz = N , Np = 0 inside
the contour C. The constraint thus becomes

2πN =

∫ 2π

0

d

dω
argD̂(rejω)dω (20)

Now,

d

dω
argD(rejω) = N − d

dω
arctan

aTRs(ω)

aTRc(ω)
(21)

where R = diag(1, r−1, · · · , r−N ). The constraint thus sim-
plifies to ∫ 2π

0

d

dω
arctan

aTRs(ω)

aTRc(ω)
dω = 0 (22)

Taking the derivative, we get∫ 2π

0

aTR(S(ω) + C(ω))RNa

aTR(S(ω) + C(ω))Ra
dω = 0 (23)

where N = diag(0, 1, · · · , N).
We can employ the same approach from the eigenfilter de-
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sign algorithm to handle the fractional form. The constraint
can be satisfied iteratively with the denominator from the pre-
vious iteration used as a weight for the current iteration. For
notation simplicity, let Λ(ω) = R(S(ω) + C(ω))R, then the
constraint can be best satisfied iteratively by minimizing

κ
(i)
L = a(i)T

(∫ 2π

0

Λ(ω)N

a(i−1)TΛ(ω)a(i−1) dω

)
a(i)

= a(i)TK̂(i−1)a(i) (24)

Note that the term Λ(ω)N causes κ(i)L to lose its symmetry,
making it difficult to combine with the eigenfilter approach.
To resolve this issue, we relax the constraint by introducing
an additional error term κ

(i)
R = a(i)TK̂T(i−1)a(i) to form the

overall constraint

κ(i) =
1

2
(κL + κR)

= a(i)T

(∫ 2π

0

1
2 (Λ(ω)N + NTΛT(ω))

a(i−1)TΛ(ω)a(i−1) dω

)
a(i)

= a(i)TK(i−1)a(i) (25)

Note that the additional κR is a valid constraint by itself, since
it is formulated by simply taking the transpose of the original
κL. While more sophisticated methods to relax the constraint
such as semidefinite relaxation [15] exist, a simple grouping
of the terms is sufficient for the eigenfilter approach.

5. OVERALL DESIGN ALGORITHM

While the objective function and the constraint can be directly
formulated as a Quadratic Constrained Quadratic Program-
ming (QCQP) problem, we consider the simpler formulation

J
(i)
EF = γE

(i)
EF + (1− γ)κ(i) (26)

Substituting in the definition of the terms, we arrive at the
following iterative minimization

minimize
a(i)

a(i)T(γP(i−1) + (1− γ)K(i−1))a(i)

subject to a(i)Ta(i) = 1
(27)

Based on our formulation of the constraint, K(i) is symmet-
ric, real valued, and positive definite. We can therefore use the
Rayleigh principle to find the a(i) that minimizes γP(i−1) +
(1 − γ)K(i−1). The overall algorithm to solving the con-
strained allpass problem is shown in Algorithm 1. Note that
the δ parameter in the algorithm serves as the convergence
criterion. The rate of convergence highly depends on the pre-
scribed phase requirement. A narrowband filter will require
more iterations than a typical lowpass.

6. EXAMPLE DESIGNS

The constrained filter design algorithm allows for frequency
selective realizations using allpass substructures in case of

Algorithm 1 Constrained Allpass Filter Design

Given: prescribed phase response Θpre(ω), filter order N ,
weight function W (ω), γ;
a(0) = eigenvector corresponding to the minimum eigen-
value of

∫
R
W (ω)Sβ(ω);

i=1;
repeat

formulate γP(i−1) + (1− γ)K(i−1);
compute a(i) = eigenvector corresponding to the mini-
mum eigenvalue;
i = i + 1;

until ‖a(i) − a(i−1)‖ < δ

very narrowband operations. Let us consider the design of
an allpass filter with prescribed phase response

Θpre(ω) =

{
−(N − 1)ω 0 ≤ ω ≤ wp
−(N − 1)ω + π ωs ≤ ω ≤ π

(28)

We can then use the resulting allpass filter to form a lowpass
filter of the form

H(z) =
1

2

(
z−(N−1) +A(z)

)
(29)

whereA(z) is of orderN . We first consider a benign example
with ωp = 0.1π, ωs = 0.2π, and N = 15. Figure 3 shows
the design results for the unconstrained approach in contrast
to limiting the largest pole magnitudes 0.9, 0.8 and 0.7. The
characterstics of the various designs are summarized in Ta-
ble 1. Notice that while the algorithm successfully yields an
allpass design with the required maximum pole magnitude, it
does so at the cost of reducing passband and stopband attenu-
ations. To compare with other least squares designs, Figure 4
shows the result from simply setting thresholds at 0.9, 0.8 and
0.7. In this setup, the unconstrained eigenfilter method is first
used to solve for the allpass filter coefficients. The poles with
magnitudes higher than the threshold are then scaled down to
be within the constraint. It is evident that a systematic de-
sign algorithm is necessary since simple scaling of the poles
greatly deteriorates the filter response.

In the second example, we consider a very narrowband
lowpass filter design with N = 15, ωp = 0.0025π, ωs =
0.01π. These design requirements closely resemble the ex-
pected operation frequency ranges of a DTOP setup. Figure
5 shows the overall design result of the constrained approach
with maximum radius set to 0.97. The resulting maximum
pole radius is 0.969, with Ap = −0.3141dB, and As =

Requirement rmax Ap (dB) As (dB)
unconstrained 0.9181 −0.002717 −35.1
rmax < 0.9 0.8879 −0.02984 −21.73
rmax < 0.8 0.7822 −0.426 −11.67
rmax < 0.7 0.6797 −1.287 −9.321

Table 1: Comparison results showing the passband attenu-
ation Ap, stopband attenuation As and the maximum pole
magnitude rmax for various allpass designs.
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Fig. 3: Lowpass design using allpass subsections showing
comparison results of unstrained approach versus constrain-
ing the maximum pole magnitudes to 0.9, 0.8 and 0.7.

Fig. 4: Results from setting a hard threshold of 0.9, 0.8 and
0.7 on the maximum pole magnitudes. Poles with magnitudes
outside of the threshold are down scaled.

−4.096dB. Note that similar design requirements with the
same pole magnitude constraint were targeted in [12], but
was only achieved through an ad-hoc method that involved a
N = 24 filter as well as design complications such as interpo-
lation and post filtering. The constrained eigenfilter approach
is able to produce a realizable design through a generalized
algorithm at lower filter order and lower complexity.

7. CONCLUSION

We present an allpass filter design algorithm that is able to in-
corporate a prescribed constraint on the maximum pole mag-
nitude. We first formulate the phase error in the least squares
sense, and combine it with the constraint obtained through
Argument Principle. The constraint is relaxed to yield a sym-
metric matrix that can be easily combined with the uncon-
strained eigenfilter design approach. The overall result is
a minimization problem that can be iteratively solved using
Rayleigh’s principle. The proposed algorithm will be excel-
lent in parametrizing allpass filters realized using photonic
components since it directly incorporates constraints that re-
sult from real world fabrication limitations.

Fig. 5: Narrowband design using allpass subsections from the
constrained approach with maximum pole magnitude of 0.97.
A magnification of the passband and stopband region is also
shown.

8. REFERENCES

[1] S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth wdm
using silicon microring modulators,” Optics Express, vol. 18, no. 16,
pp. 16858–16867, Aug 2010.

[2] F. C. G. Gunning et al., “Recent developments in 40 gsymbol/s co-
herent wdm,” in Proc. 11th Int. Conf. Transparent Optical Networks,
2009, pp. 1–4.

[3] J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical
processing of microwave signals,” IEEE/OSA Journal of Lightwave
Technology, vol. 23, no. 2, pp. 702–723, 2005.

[4] P. A. Regalia, S. K. Mitra, and P. P. Vaidyanathan, “The digital all-pass
filter: a versatile signal processing building block,” Proceedings of the
IEEE, vol. 76, no. 1, pp. 19–37, 1988.

[5] M. Renfors and T. Saramaki, “A class of approximately linear phase
digital filters composed of allpass subfilters,” in Proc. 1986 IEEE In-
ternational Symposium on Circuits and Systems, San Jose, CA, May
1986, pp. 678–681.

[6] H. C. Kim, K. Ikeda, and Y. Fainman, “Resonant waveguide device
with vertical gratings,” Optics Letters, vol. 32, no. 5, pp. 539, 2007.

[7] G. Lenz and C. K. Madsen, “General optical all-pass filter structures for
dispersion control in wdm systems,” IEEE/OSA Journal of Lightwave
Technology, vol. 17, no. 7, pp. 1248–1254, 1999.

[8] A. Jiang and H. K. Kwan, “Iir digital filter design with new stability
constraint based on argument principle,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 56, no. 3, pp. 583–593, 2009.

[9] W. S. Lu, “An argument-principle based stability criterion and applica-
tion to the design of iir digital filters,” in Proc. IEEE Int. Symp. Circuits
and Systems ISCAS 2006, 2006.

[10] S.C. Chan, H.H. Chen, and C.K.S. Pun, “The design of digital all-
pass filters using second-order cone programming (socp),” Circuits
and Systems II: Express Briefs, IEEE Transactions on, vol. 52, no. 2,
pp. 66 – 70, feb 2005.

[11] T. Q. Nguyen, T. I. Laakso, and R. D. Koilpillai, “Eigenfilter approach
for the design of allpass filters approximating a given phase response,”
IEEE Transactions on Signal Processing, vol. 42, no. 9, pp. 2257–2263,
1994.

[12] Y. Wang, A. Grieco, B. Slutsky, B. Rao, Y. Fainman, and T. Nguyen,
“Design and analysis of a narrowband filter for optical platform,” in
Proc. 36th International Conference on Acoustics, Speech and Signal
Processing. IEEE, May 2011.

[13] J. Franklin, Matrix Theory, Prentice Hall, 1968.
[14] J. W. Brown and R. V. Churchill, Complex Variables and Applications,

McGraw-Hill, 1995.
[15] Z. Q. Luo, W. K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite

relaxation of quadratic optimization problems,” IEEE Signal Process-
ing Magazine, vol. 27, no. 3, pp. 20–34, 2010.

2172


