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ABSTRACT

In this paper, we propose a speaker verification system called m-

vector system, where speakers are represented by uniform segmen-

tation of their Maximum Likelihood Linear Regression (MLLR)

super-vectors, denoted m-vectors. The MLLR super-vectors are

extracted with respect to Universal Background Model (UBM) with

MLLR adaptation using the speakers data. Two criterion are fol-

lowed to segment the MLLR super-vector: one is disjoint segmen-

tation technique and other one is overlapped windows. Afterward,

m-vectors are conditioned by our recently proposed [1] session

variability compensation algorithm before calculating score during

test phase. However, the proposed method is not based on any

total variability space concept and uses simple MLLR transforma-

tion for extracting m-vector without considering any transcription

of the speech segment. The proposed system shows promising

performance compared to the conventional i-vector system. This

indicates that session variability compensation plays an important

role in speaker verification. Speakers can be represented by simpler

way instead of generating i-vector in conventional system and able

to achieve performance comparable to the i-vector based system.

Experiment results are shown on NIST 2008 SRE core condition.

Index Terms— m-vector, MLLR super-vector, LDA, WCCN,

Speaker Verification

1. INTRODUCTION

Speaker verification is a binary classification problem. It either ac-

cepts or rejects the claimant speakers by analyzing his/her voice sig-

nal.

Most commonly used i-vector technique [2] becomes the state-

of-the-art in speaker verification. In this technique, speakers are rep-

resented by vectors on total variability space. The vectors are called

i-vectors. The total variability space is build using computationally

heavy iterative algorithm and pooling data from many speakers over

different channels/sessions. The i-vectors are then post-processed to

account the session variability before scoring (during testing). Com-

monly, Linear Discriminant Analysis (LDA) [2, 3] is used to dis-

criminate the speakers and Within Class Covariance Normalization

(WCCN) [4] to account the session variability. Probabilistic (P)-

LDA [5, 6] based generative modeling technique is shown to be use-

ful in gender independent speaker verification task. Each of these

post-processing methods has its own scoring technique between two

i-vectors. Therefore, the i-vector system can be broadly divided into

two parts: one is building total variability space, T and other is

post-processing task i.e. session variability modeling. Recently, a

conditioning algorithm called Eigen Factor Radial (EFR) was pro-

posed [1] on the i-vector, which includes length normalization. An

interesting performance is noticed [1] using the method on i-vector

system. This arise some questions about the role of T on i-vector

system. The performance of the i-vector system comes from the to-

tal variability space, T , and from the session variability modeling.

The motivation of this paper is to partially answer this question

with experimentally approach. If we are able to achieve performance

which is comparable to the conventional i-vector system with the

same session variability and decision steps but using simpler vec-

tor (which is generated without concept of total variability space), it

will evident that the key role in speaker verification is played by ses-

sion variability modeling while different approaches can be applied

for i-vector estimation.

In order to reach our objective, we are proposing a speaker data

representation by vectors called m-vectors. The m-vectors are ex-

tracted by uniform segmentation of speakers Maximum Likelihood

Linear Regression (MLLR) super-vectors. It is important to note that

the m-vector extraction is performed independently for each speech

segment with respect to Universal Background Model (UBM). No

specific development data or heavy computing load are required

here. Then m-vectors are post-processed using EFR conditioning

algorithm. Performance of the proposed method is compared with

an i-vector-based baseline.

This paper is organized as follows: Section 2 describes the con-

cept of MLLR adaptation. Baseline system is described in Section 3

followed by post-processing method on i-vector (Section 4). Section

5 describes the proposed method. Experimental setup is described in

Section 6. Results and discussion are presented in Section 7. Finally,

the paper is concluded in Section 8.

2. MLLR ADAPTATION

MLLR [7] is a adaptation technique. It is generally used on Auto-

matic Speech Recognition (ASR) system. It estimates a affine trans-

formation, A with respect to Speaker Independent (SI) model for a

given speech data. The transformation is then applied to Gaussian

mean vectors of the SI model to get the adapted model:

µ̂ = Aµ+ b, Σ̂ = Σ (1)

where µ and Σ are the mean and co-variance matrix of the SI model.

(A, b) are the MLLR transformation parameters. µ̂ and Σ̂ are the

parameters of the adapted model.

The concept of the MLLR super-vector was first proposed by

Stolcke et al. [8] in speaker verification on Support Vector Machines

(SVMs) framework. Several other speaker verification systems can

be found in literature based on MLLR/Constraint (C)-MLLR super-

vector, specially in [8, 9, 10]. They use MLLR super-vector as a

feature in speaker verification system using SVMs. The main dif-

ferences of our proposed method with [8, 9, 10] are: (i) we estimate

only single global MLLR transformation to create speaker specific
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m-vector without any Automatic Speech Recognition (ASR) tran-

scription in contrast to [8, 10] (ii) we do not use any SVM modeling

technique on speakers MLLR super-vectors. Recently, the useful-

ness of the MLLR super-vector has also shown on speaker identi-

fication task in anchor modeling framework [11] using eigen voice

concept.

3. CLASSICAL I-VECTOR SYSTEM

We consider classical i-vector system [2] as the baseline system. An

i-vector w (of dimension R) is calculated using,

M̂[CF×1] = M[CF×1] + T[CF×R]w[R×1] (2)

where T is the total variability space. C and F are respectively, the

number of mixture in UBM and dimension of the feature vector. M̂
and M indicate the Gaussian Mixture Model (GMM) super-vector

of the speaker adapted model and UBM, respectively.

During training and test phases, i-vectors of the target speakers

and test utterance are estimated from the training/test data respec-

tively using Eq.(2). i-vectors are then post-processed before calcu-

lating score. The post-processing methods are described in the next

section.

4. POST-PROCESSING METHOD AND SCORING

There are several post-processing techniques available in literature

[1, 2, 5], which are applied on i-vector to discriminate the speak-

ers and account the effect of the channel/session variability. LDA

[3, 2]+WCCN [4] is the most commonly used technique. In this

approach, i-vectors are first projected onto LDA space to discrimi-

nate the speakers and followed by WCCN is applied to accounting

the session variability. Finally, LDA+WCCN projected i-vectors are

used for scoring in test phase. Generally, cosine kernel fast scoring

[2] is used in this domain.

Eigen Factor Radial (EFR), a new method for intersession com-

pensation and scoring is recently proposed [1] on the i-vector space.

In this approach, an iterative conditioning algorithm is applied on

the i-vectors in order to handle the session variability as,

ŵ←
V −

1

2 (w − w)
√

(w − w)tV −1(w − w)
(3)

where V and w are the covariance matrix and mean vector of the

training i-vectors respectively in successive iteration. During test, a

Mahalanobis-based scoring function described in Eq.(4) is used for

scoring between two i-vectors.

score(ŵ1, ŵ2) = (ŵ1 − ŵ2)
tW−1(ŵ1 − ŵ2) (4)

W is the within-class covariance matrix computed using develop-

ment data set. Details about the technique can be found in [1].

5. PROPOSED M-VECTOR SYSTEM

In this section, we describe our proposed m-vector based speaker

verification system, where m-vector is extracted from speaker spe-

cific MLLR super-vector.

5.1. Speaker specific MLLR Super-vector estimation

MLLR transformations are estimated with respect to Speaker Inde-

pendent (SI) model for given speech segments as in Eq.(1). Then the

elements of the transformation matrix are stacked one by one to form

a vector called MLLR super-vector [8]. The UBM is considered as

the SI model and bias (b) is not considered in our experiment. Single

iteration is followed in MLLR adaptation process without using any

transcription of speech data. We use 50 dimensional feature vector,

which gives 50×50 = 2500 elements for each MLLR super-vector.

Algorithm 1 describes the steps involved in MLLR transformation

estimation for rth speaker. Fig.1 shows graphical illustration of

MLLR super-vector estimation process of speaker, r.

Algorithm 1: MLLR transformation

Initial: Load UBM and obtain speaker, r training feature vec-

tors, X = {x1, . . . xN}

Step 1: Determine the probabilistic alignment, γj (t) of X
with respect to UBM ∼ N (ω, µ,Σ) for Gaussian mixture j
as,

γj (t) = p(j|xt) =
ωjbj(xt)

∑C

k=1 ωkbk(xt)
(5)

Step 2: Compute two sufficient statistics for ith dimension of

feature vectors,

K(i) =

C
∑

j=1

N
∑

t=1

γj(t)
1

σ2
ji

xi(t) µ
′

j (6)

G(i) =
C
∑

j=1

1

σ2
ji

µjµ
′

j

N
∑

t=1

γj (t) (7)

µj , σ2
ji and C are jth mean, ith component of jth covariance

matrix and number of Gaussian components of UBM, respec-

tively. The symbol (.)′ indicates matrix transpose operation.

Step 3: ith row of the MLLR transformation is obtained,

Ar
i = K(i)G(i)−1

(8)

Step 4: Repeat Step 2 to 3 upto feature vector dimension

Adaptation
MLLR

Speech segment

UBM 

MLLR Super−vector

for speaker, r

for speaker, r

Ar

(Ar
SV

)

[a11 a12 . . .][1×2500]

Fig. 1. Illustration of MLLR super-vector estimation.

5.2. Speaker specific m-vector extraction

After estimation of MLLR super-vector as described in previous sec-

tion, MLLR super-vector is segmented into different part to form

m-vector. We consider two criterion to extract m-vector as follows:

22



5.2.1. Method-I: Disjoint segmented m-vector system

Here, the MLLR super-vector of each target speaker is segmented

into equal disjoint part i.e. mr
i ∩ mr

j = Φ, ∀i 6= j (without any

overlap between the segments). Each segment of the MLLR super-

vector is considered as a m-vector of the particular target speaker.

For example, mr
1 is a m-vector which is belonging to the first seg-

ment of the rth speaker MLLR super-vector. Hence, each speaker

is characterized by a number of m-vectors and each part of the m-

vector constitutes a sub-system. In our experiment, we have 2500
elements in MLLR super vector. In case of m-vector dimension of

500 yields maximum 5 vectors to characterize each target speaker

i.e. 5 sub-systems. Fig.2 graphically illustrates the m-vector ex-

traction procedure of rth target speaker from his/her MLLR super-

vector.

}} }Ar

SV [1×2500]

[1× 500]
mr

1 mr
2

mr
n

[1× 500]

sub-sys1 sub-sys2 sub-sysn

[1× 500]

Fig. 2. Illustration of m-vector extraction of rth target speaker from

his/her MLLR super-vector using disjoint segmented method.

5.2.2. Method-II: Overlapped windowed m-vector system

In this case, target speaker specific MLLR super-vector is uniformly

segmented using a moving window with 50% overlap of its previous

adjacent segment as illustrated in Fig.3. The main motivation of this

method is that it will be able to capture the speaker information ly-

ing in-between two adjacent segments (like feature extraction from

speech signal with 50% overlap windows). Similarly to method I,

the elements of the MLLR super-vector within each window is con-

sidered as a m-vector. The m-vector obtained for each window is

constituted a separate system. The size of the window length con-

trols the dimension of the m-vectors. By varying the length of win-

dow, various dimension of m-vectors are generated. In our experi-

ment, window size of 500 elements yield best performance, which is

presented later in this paper. This gives [2× (2500/500) − 1] = 9
m-vectors to characterize each speaker i.e. 9 sub-systems. Same

notations are followed to represent the speakers in this system (in

Fig.3) as disjoint segmented m-vector system.
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SV [1×2500]
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n
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Fig. 3. Illustration of m-vector extraction of speaker, r from his/her

MLLR super-vector using overlapped windowed method.

After extracting the m-vectors as described previous subsec-

tions, LDA is applied on m-vector of each sub-system to discrim-

inant the speakers. Each sub-system has its own LDA transform.

LDA transform is estimated pooling data from 890 non-target speak-

ers.

5.3. Test Phase and Score Fusion

The m-vectors of the test utterance are extracted in similar manner

as described in previous sub-sections. Then, m-vectors are projected

on the LDA space by using the projection matrix belonging to their

respective sub-systems. Finally, the projected m-vectors of the test

utterance, say m̃test
1 is scored against corresponding m-vector m̃r

1 of

the claimant speaker, r (obtained during training phase) and so on.

Finally, the scores of the different m-vectors are fused (for particu-

lar LDA projected dimension across all the sub-systems) into single

value. It can be expressed as,

Si = score(m̃r
i , m̃

test
i ) (9)

Fusion score : Z =
1

Nsubsys

Nsubsys
∑

i=1

Si (10)

where score(., .) indicates the function which defines the scoring

between two m-vectors. Mahalanobis distance measure is used for

scoring as Eq.(4). We use two iterations of Eigen Factor Radial

(EFR) conditioning algorithm before calculating score between the

two m-vectors. For fusion, equal weightage is given to all systems.

6. EXPERIMENTAL SETUP

All experiments are carried out on NIST 2008 SRE core condition

(male speakers and det7 condition) as per NIST evaluation plan [12].

There are 1270 speech segments for training 1270 target models.

Each speech segment consists approximately 2.5 minutes of speech

in an average.

The male gender dependent UBM of 512 mixture components

with diagonal covariance matrices, is trained using data from non-

target speaker in NIST 2004 SRE. A 50 dimensional Linear Fre-

quency Cepstral Coefficient (LFCC) feature vector (19 static, 19 ∆,

11 ∆∆ and ∆ energy) is extracted from speech signal at frame rate

of 10 ms with 20 ms Hamming windowed over frequency brand 300-

3400 Hz. Then Voice Activity Detection (VAD) is used to remove

the less energize/silence frame from the feature vectors. Finally,

silence-removed feature vectors are normalized to zero mean and

unity variance normalization at utterance level.

For i-vector system, the total variability space T is trained us-

ing 12399 utterances from 890 non-target speakers (NIST 2004-05,

Switchboard II part 1, 2 & 3; Switchboard cellular part 1 & 2, about

15 sessions per speaker). This data set is also used for implementing

LDA, WCCN and Eigen Factor Radial (EFR) technique. 400 dimen-

sional i-vectors are extracted from speech segments during training

and testing phase.

The systems performance is evaluated using Equal Error Rate

(EER) and Minimum Detection Cost Function (MinDCF) as per

NIST plan [12].

7. RESULTS AND DISCUSSION

7.1. Selection of best m-vector system

In this section, we first evaluate the proposed m-vector systems and

then best system is chosen from them. The best proposed system
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is used for comparing the performance with baseline system in next

section.

Table 1 shows the speaker verification performance of the pro-

posed systems for different length of m-vectors (column 2) and cor-

responding their optimal Linear Discriminant Analysis (LDA) pro-

jected dimension (column 3). It is better to mention that each sub-

system has their own LDA projection matrix. For example, m-vector

dimension of 500 yields 5 sub-systems in disjoint technique. The

scores of all the sub-systems for particular LDA dimension are fused

together (linear fusion), which is presented on the table.

Table 1. EER and MinDCF of the proposed method for different size

of m-vectors on NIST 2008 SRE core condition (male speakers and

det7 condition).

System m-vector LDA EER MinDCF

dim. Opt. dim. (%)

Disjoint 2500 250 5.92 0.03296

1250 200 5.69 0.0293

500 200 5.47 0.0268

250 200 5.69 0.0301

125 100 7.52 0.0341

Overlapped 500 350 4.78 0.0261

From Table 1, the following observations can be drawn:

• Disjoint segmentation method shows best performance for the

m-vector size of 500. This indicates that m-vector size of 500
is able to extract more speaker information from their MLLR

super-vector compared to 2500, 1250, 250 and 125.

• Overlapped window method shows further reduction of EER

and MinDCF compared to disjoint segmentation technique.

This implies that overlapped technique is able to capture the

speaker information in-between the adjacent two segments

(i.e. two m-vectors), which is not captured in disjoint case.

Fig.4 shows the details performance of the sub-systems in dis-

joint (for m-vector of dimension=500) and overlapped case. From

Fig.4, it can be noticed that the EER value of each sub-system is sig-

nificantly higher than the fusion result of the sub-systems presented

in Table 1. This indicates that each segments (i.e. m-vector) of the

MLLR super-vector contains speaker specific information which are

complementary for each another, and it is better to utilize the infor-

mation available in different parts of MLLR super-vector separately.

7.2. Comparison of performance of Baseline system with Pro-

posed method

In this section, we compare the speaker verification performance

of the proposed best system (presented in Table 1) with baseline i-

vector system.

Table 2 compares the performance of the best proposed method

with baseline i-vector system. We can make the following observa-

tions from Table 2:

• Baseline system with LDA+WCCN performs better than

WCCN alone. This indicates that post-processing task plays

a significant role on i-vector system.
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Fig. 4. EER of each sub-system in disjoint (m-vector dim.=500)

and overlapped techniques on NIST 2008 SRE core condition (male

speakers only and det7 condition).

Table 2. Comparison of EER and MinDCF of baseline system with

proposed best system on NIST 2008 SRE core condition (male speak-

ers and det7 condition).

System EER MinDCF

(%)

Baseline:

(A2) i-vector (dim.=400)

+ WCCN + Fast scoring 4.10 0.0185

(A2) i-vector (dim.=400)

+ LDA (Opt. dim.=200)

+ WCCN + Fast scoring 3.63 0.0183

Proposed:

(B) Overlapped m-vector (dim.=500)

+ LDA (Opt. dim.=350)+EFR 4.78 0.0261

Fusion systems (A2,B) 3.15 0.0155

• Proposed method shows promising results comparable to the

baseline i-vector system. However, it does not using any con-

cept of total variability space and ASR transcription during

MLLR super-vector estimation. This indicates that speakers

can be characterized by simple vectors (i.e. m-vectors). Such

system (with session variability compensation) can achieve

comparable performance to the i-vector system.

This also indicates that total variability space seems to

play less important role in i-vector system compared to

post-processing task (session variability compensation) on

i-vectors.

• Fusion of systems (A2) (WCCN+LDA) with (B) further re-

duce the EER and MinDCF compared to baseline i.e. (A2).

This implies that the proposed system also contains comple-

mentary information for the i-vector system.

In Table 3, we present a m-vector system, where m-vectors are

extracted by uniform segmentation of target speakers Gaussian Mix-

ture Model (GMM) super-vectors [13]. This system is developed

later submission of this paper. GMM super-vectors are derived from

UBM with single iteration of Maximum a Posteriori (MAP) [14, 15]

adaptation using speakers training data. During MAP adaptation,

the value of relevance factor, 14 is considered. In our experiment,
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we use 50 dimensional feature vectors, which yields GMM super-

vector size of 25600. In contrast to m-vector system using MLLR

super-vector, Principal Component Analysis (PCA) is used to reduce

the dimension of the m-vectors in this case. PCA gives the best per-

formance. The performance of the system is shown in Table 3 for

disjoint method. Since, overlapped method does not provide any

further gain (system in this domain).

Table 3. Comparison of EER and MinDCF of proposed m-vector

system derived from GMM-super-vector with conventional i-vector

system using EFR post-processing on NIST 2008 SRE core condition

(male speakers and det7 condition).

System m-vector PCA EER MinDCF

dim. Opt. dim. (%)

1600 500 3.64 0.0221

2560 900 3.42 0.0205

Disjoint 3200 1000 3.42 0.0179

6400 800 2.96 0.0167

12800 800 3.18 0.0145

25600 600 3.18 0.0158

i-vector

(dim.=400) - - 2.05 0.0156

From Table 3, it is observed that proposed system (for m-vector

size of 6400) gives performance which is comparable to i-vector sys-

tem, even though both system uses same post-precessing and scor-

ing techniques (i.e. EFR). It further indicates that post-processing

task plays major rule in i-vector system than total variability space.

Furthermore, advantage of the segmentation method is that it gener-

ates m-vectors which are much more smaller dimension than GMM

super-vector. Hence, m-vector system is very easier to implement

on device having less memory and computation power rather than

i-vector system. It is important to note that LDA does not help in

i-vector system.

It is to be noted that the results presented in this paper are ob-

tained in the proposed method with two very simple m-vector ex-

traction algorithms which possibly may not optimal. There may be

lot of speaker related information in the MLLR super-vector, which

is not capture by our simple algorithms.

8. CONCLUSION

In this paper, we proposed a m-vector based speaker verification

system. The m-vectors are generated by uniform segmentation of

the speakers MLLR super-vectors. An MLLR super-vector is esti-

mated using single iteration of adaptation without considering ASR

transcription and concept of the total variability space for a given

speech data. m-vectors are then processed by conditioning algo-

rithm to account the session variability. The proposed system shows

promising performance compared to the conventional i-vector sys-

tem on NIST 2008 SRE core condition, even though it is using a non-

optimal m-vector extraction procedure. This indicates that speak-

ers can be represented by simple m-vectors and post processing can

yield performance comparable to the conventional i-vector system.

Hence, total variablity space seems to play less important role in

classical i-vector system. Besides, total variablity space training in

i-vector system requires computationally heavy iterative algorithm

and a large number of training data from different speakers over the

various channels/sessions. However, the proposed system is very

simple and can be easily implemented on small device having less

memory and computing power for real-time application. Further-

more, fusion of the m-vector system with i-vector system allows a

slight improvement of the performance compared to the i-vector sys-

tem. We expect that better m-vector extraction technique will further

improve the performance of the proposed method in future.
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