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ABSTRACT

In this contribution we analyze the Projection Approxima-
tion Subspace Tracking (PAST) algorithm by a novel anal-
ysis method based on Singular Value Decomposition (SVD).
Based on the gained new insights we propose several robust
algorithmic modifications that allow to guarantee stability of
the algorithm run for normalized step-sizes. Furthermore we
investigate the tracking behavior for such step-size choices.

Index Terms— PAST algorithm, subspace tracking, blind
source separation

1. INTRODUCTION

Since its introduction by Bin Yang in 1993, the Projection Ap-
proximation Subspace Tracking (PAST) algorithm [1, 2] and
its many derivatives have become quite popular as relatively
simple algorithms to detect subspaces, separate them and even
track them. The original analysis of the algorithm’s behav-
ior [3, 4] was based on an Ordinary Differential Equation
(ODE) approach with all its pros and cons. In the ODE frame-
work iterative approaches are interpreted as differential equa-
tions of continuous functions and based on some Ljapunov ar-
guments, it can be deduced whether step-sizes exist for which
the algorithm converges. With such approach, a relatively
large amount of assumptions has to be made in order to make
it work. This is one of its larger drawbacks as it often remains
unclear whether all such assumptions can be satisfied in prac-
tice. The second drawback is that a practical (upper) bound
on the step-size can hardly be deduced, leaving it open for
experiments which step-sizes are guaranteed to work or not.

The PAST algorithm minimizes the cost function

Jo = min
W

E
[

∥

∥xk −WWHxk

∥

∥

2
]

. (1)

Here, xk ∈ CN×1 and Wk ∈ CN×r. Starting with initial
valuesRyy,0 = εI andW0 ∈ CN×r = [εIr, O]T a recursive
algorithm is applied on a sequence of vectors xk in order to
minimize the corresponding Least-Squares (LS) cost function

of (1) on continuously incoming observations xk:

yk = WH
k−1xk (2)

R̂yy,k = R̂yy,k−1 + αk

[

yky
H
k − R̂yy,k−1

]

(3)

ek = xk −Wk−1yk (4)
Wk = Wk−1 + γkeky

H
k R̂−1

yy,k (5)

In the last equation, the so-called update equation, the inverse
of the estimated autocorrelation matrix Ryy,k = E

{

yky
H
k

}

is applied. This is typically achieved by the matrix inversion
lemma, saving complexity. Other fast variants are possible to
derive and have been proposed [5] but are out of the scope of
this paper. We have selected a relatively general form of the
algorithm with two free parameters αk and γk. The range of
αk is between zero and one and determines the time horizon
over which the averaging takes place to compute the autocor-
relation matrix estimate R̂yy,k. A value of αk close to one
gives more emphasis on the recent value of yk while a value
closer to zero averages over a longer time. While the optimal
choice of αk depends on the tracking problem, the choice of
γk is much more crucial for the working of the algorithm and
thus will be the focus of this article.

In this contribution we present a different analysis ap-
proach based on Singular Value Decomposition (SVD) that
removes most of the assumptions mentioned in [4] and pro-
vides practical step-size bounds for γk. It furthermore yields
a new insight in the algorithmic behavior, allowing for alter-
ations which further improve its performance. The paper is
organized as follows: After this introduction, we analyze the
first order moments algorithm in Section 2 and draw first con-
clusions. We then proceed to investigate step-size bounds in
Section 3, which in turn leads to new insight of the algorithm
and allows to propose some modifications, guaranteeing ro-
bust behavior and practical step-size bounds. In Section 4 we
present simulation results to corroborate our findings. Finally,
some concluding remarks in Section 5 round up the paper.

2. FIRST ORDER ANALYSIS

Let xk ∈ CN×1 andWk ∈ CN×r, whereN denotes the num-
ber of observations and r < N the dimension of the subspace.
The goal of the algorithm in (2)-(5) is thus to end up with a
unitary matrixWk, i.e., limk→∞ WH

k Wk = Ir.
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In a first order analysis we study the algorithmic be-
havior in the mean. For this we assume the sensor data
xk to be of random nature with an autocorrelation matrix
Rxx,k = E

{

xkx
H
k

}

. The task of the matrixWk is to extract
r individual subspace signals out of xk.

Assumptions: We start our analysis with the estimated au-
tocorrelation matrix R̂yy,k. As this matrix is being averaged
over time as shown in (3), we assume it to be at least short
time ergodic. More specifically we assume that the ensemble
averageRyy,k of the given process is determined from a time
average R̂yy,k over past samples. As a consequence we have
thatRyy,k = E

{

R̂yy,k

}

= V1Λyy,kV
H
1 , whereΛyy,k con-

tains the time-variant eigenvalues ofRyy,k whileV1 remains
constant. After some substitutions Ryy,k = E

{

yky
H
k

}

=
E
{

WH
k−1xkx

H
k Wk−1

}

= E
{

WH
k−1Rxx,kWk−1

}

and
correspondingly R−1

yy,k =
(

E
{

WH
k−1Rxx,kWk−1

})−1.
We have applied here the Independence Assumption (IA)
to treat Wk−1 independently of xk. The IA is a common
tool in adaptive filter theory [6]. Due to the averaging effect
we also assume the expectation values to be independent
of other terms in xk. As R̂yy,k is a time-averaged ver-
sion, this will also have an impact on its decomposition:
E
{

R̂yy,k

}

= V1Λyy,kV
H
1 = V1Σ̄kΛxx,kΣ̄kV

H
1 . Here

we emphasize a subtle but very important difference: the au-
tocorrelation matrix R̂yy,k presented in (3) is a time averaged
matrix whose decomposition leads to likewise temporally-
averaged singular values Σ̄k. These singular values should
not be confused with the instantaneous singular values Σk

originating from decomposingE {Wk−1}.
The mean of update equation (5) can then be written as:

E {Wk} = E {Wk−1}

+ γkE
{

(I−Wk−1W
H
k−1)xkx

H
k Wk−1

}

×E
{

R̂−1
yy,k

}

. (6)

Applying the expectation only with respect to the random pro-
cess xk and applying the IA we obtain

E {Wk} = E {Wk−1}+ γkE
{

I−Wk−1W
H
k−1

}

×Rxx,kE {Wk−1}E
{

R̂−1
yy,k

}

. (7)

Since the autocorrelation matrix Rxx,k = QΛxx,kQ
H ,

we recognize that a steady-state solution only exists if
E {Wk} = [U1,U2][Σk, O][V1V2]H with U1 = Q where
we applied a SVD onW and partitioned it into the significant
part U1ΣkV

H
1 and a zero block. With such finding we can

now rewrite (7) into its SVD components and recognize that
all terms comprise of the same left matrix U1 and the right
matrixVH

1 , while all terms in the center become diagonal:

Σk = Σk−1 + γk(I−Σk−1Σk−1)Λxx,kΣk−1

×(Σ̄kΛxx,kΣ̄k)
−1. (8)

As the entire equation has become diagonal, we can now
much simpler describe it by its diagonal terms:

σi,k = σi,k−1 + γk
(1− σ2

i,k−1)σi,k−1

σ̄2
i,k

; i = 1, ..., r.(9)

Although being a complicated term in σi,k−1, we already can
recognize here that the actual values λxx

i,k in the autocorrela-
tion matrix Λxx,k, namely the power contributions of the ob-
served sensor signals, are irrelevant to the algorithm. Know-
ing that the steady state solution is given if all signals are
perfectly decorrelated, that is when all singular values are
one, we aim to have σi,k−1 → 1. We can rewrite this for
i = 1, 2, ..., r as

1−σi,k = (1−σi,k−1)

[

1− γk
(1 + σi,k−1)σi,k−1

σ̄2
i,k

]

.(10)

As all singular values are positive, we have thus just proven
the following theorem.

Theorem 2.1 The PAST algorithm converges in the mean for
a sufficiently small step-size γk > 0, if (1+σi,k−1)σi,k−1

σ̄2

i,k

is
bounded.

As the term (1+σi,k−1)σi,k−1

σ̄2

i,k

in (10) can take on arbitrary val-
ues in the range [0,∞], it is difficult to bound the step-size at
this point. We recognize that in particular small singular val-
ues are decisive. We will return to this problem in Section 3
ahead and treat it in detail.

Note that similar forms of (7) have been analyzed in [7]
in the context of blind source separation and [8] as a means
to compute robustly matrix inverses. Note further that in his
article [2] Bin Yang also proposed a simpler gradient term al-
gorithm, that is simply omitting the matrix inverse of R̂yy,k.
The analysis method presented here can be applied to such al-
gorithm, revealing now that the step-size γk depends strongly
on the eigenvalues λxx

i,k of the observation process xk, details
will be provided in Section 3.

Often the PAST algorithm is being run with a step-size
γk = 1/k or γk = 1/[k+1]. In this case after a few iterations,
the step-size satisfies the stability condition and the algorithm
converges. The price, however, for this convergence is a lack
of tracking capability as now the step-size becomes so small
that the algorithm cannot adjust to a new situation any more.

In particular for adaptive filters we are also interested in
analyzing the second order moment describing the quantita-
tive behavior of the algorithm. We have investigated the evo-
lution of terms of the form WH

k Wk and found out that the
result is very similar to that in (10) for the first order moment.
The main difference relies on a term that appears equally for
all diagonal entries but does not influence the stability of the
system. On the other hand, it does influence the values for
the step size γk. Due to space constraints, the present work
focuses only on the first order moment analysis.
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3. ANALYSIS OF STEP-SIZE BOUNDS

Let us return to Equation (10). We learn here that

0 < γk <
2σ̄2

i,k

(1 + σi,k−1)σi,k−1
; i = 1, ..., r, (11)

and we assume that it has an upper bound

0 < γk <
2σ̄2

min,k

(1 + σmax,k−1)σmax,k−1
. (12)

If we use the relation 0.25 + 2x2 ≥ x + x2 for x ≥ 0 we
obtain an even lower bound

0 < γk <
2σ̄2

min,k

0.25 + 2σ2
max,k−1

. (13)

The term σ2
max,k−1 is related to WH

k−1Wk−1. If λxx
k

and vk are an eigenvalue and eigenvector pair of the matrix
WH

k Wk, the following condition holds true:

|λxx
k |m‖vk‖ = ‖λxx,m

k vk‖ (14)
= ‖(WH

k Wk)
mvk‖

≤ ‖(WH
k Wk)

m‖·‖vk‖ (15)
=⇒ |λxx

k |≤ ‖(WH
k Wk)

m‖
1

m . (16)

Thus, form = 1 we obtain the simplified but practically fea-
sible lower bound

0 < γk <
2σ̄2

min,k

0.25 + 2‖WH
k−1Wk−1‖

= γmax,kσ̄
2
min,k. (17)

The smallest singular value σ̄min,k is thus decisive for con-
vergence and a step-size γk needs to be selected based on its
knowledge. In the classic PAST algorithm such knowledge is
not present and thus only very small step-sizes can be selected
in the hope to have sufficiently large values of σ̄min,k, which
in turn results in slow convergence and poor tracking.

As σ̄min,k is typically not available, we may estimate it.
Nowadays, low-complexity methods are available to estimate
the smallest singular value [9, 10]. Such estimation tech-
nique however, can easily lead to too small step-sizes, result-
ing in a very slow convergence as well as poor tracking. It
is thus of further interest to modify the algorithm in such a
way that the dependency on the smallest singular value disap-
pears. In order to prevent such undesired behavior of the clas-
sic PAST algorithm, not offering a feasible step-size bound,
we are proposing to alter update equation (5) into a generic
update

Wk = Wk−1 + γkeky
H
k B, (18)

with the following options:

PAST-I: B = R̂−1
yy,kσ̄

2
min,k (19)

PAST-II: B = R̂−1
yy,kRW,k (20)

PAST-III: B = [R̂yy,k + βIr]
−1 (21)

PAST-IV: B = I (22)

for some small but positive β > 0. Such regularization
in PAST-III is not required for computing the inverse of
R̂yy,k but prevents the smallest singular value to have a de-
cisive impact on the stability. PAST-IV is the gradient-type
version of the PAST algorithm [2]. In PAST-II an aver-
age of WH

k−1Wk−1 is computed by RW,k = RW,k−1 +
αk[WH

k−1Wk−1 − RW,k−1] and applied to compensate
for the inverse singular values of R̂yy,k, as we would find
RW,k = U1Σ̄

2
kU

H
1 . A simpler version of this is PAST-I

where we assume knowledge of the smallest singular value
only, for example by simple tracking algorithms [10].

Applying the same analysis technique as before, we find

0 < γI,k < γmax,k ≤ min
i

2σ̄2
i,k

(1 + σi,k−1)σi,k−1σ̄2
min,k

(23)

0 < γII,k <γmax,k ≤ min
i

2

(1 + σi,k−1)σi,k−1
(24)

0 < γIII,k <γmax,kδmin ≤ min
i

2
(

σ̄2
i,k + δ

)

(1 + σi,k−1)σi,k−1
(25)

0 < γIV,k <
γmax,k

tr[Rxx,k]
≤ min

i

2

(1 + σi,k−1)σi,k−1λxx
i,k

(26)

with δ = β/λxx
i,k and δmin = β/λxx

max,k. Thus, the knowl-
edge of δmin is sufficient to provide a conservative step-size
bound. Indirectly the choice of β determines now also the
convergence speed; larger values typically offering higher
speed. Bounds for (24) and (26) can also be derived, follow-
ing the approach explained at the beginning of this section. If
in (26) λxx

i,k is not known, it may be feasible to replace it by
tr(Rxx,k). Now it only depends on the matrix norm to com-
pute a safe upper bound of γk which is a feasible operation.
In practice it turns out that a matrix one norm provides tight
results. The upper bounds define some time-variant max-
imal value γmax,k and we select fractions αγmax,k, where
α ∈ [0, 1].

4. SIMULATION RESULTS

The following experiments apply the PAST algorithm to a
typical beam steering experiment, that is the observation vec-
tor xk is given by

xk =
r

∑

i=1

a(ωi)si,k + vk = Ask + vk. (27)

Here si,k is a random process forming the random vector sk
and vk is the observation noise. The steering vectors are of
the form a(ωi) = [1, ejωi , e2jωi , ..., e(n−1)jωi ]T . We selected
r = 3 frequencies ωi = [0.01, 0.03, 0.2], the variance of
the signal si,k is a unit norm and the additive noise variance
σ2
v = 10−6. Thus, the obtained three eigenvalues of the au-
tocorrelation matrix Rxx are {118.8, 57.8, 3.3}. We further
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Fig. 1. Classic PAST algorithm under various constant step-
sizes.

chose N = 60 observations per time instant of such a pro-
cess, and set αk = α in (3), γk = α for the classic PAST
algorithm and γk = αγmax,k for the robust versions. Finally,
we averaged over 100 Monte Carlo runs.

4.1. First experiment: classic PAST algorithm

In the first experiment we ran the classic PAST algorithmwith
a range of constant step-sizes γk = α = [0.1, 0.2, 0.5, 0.7, 0.9].
Figure 1 depicts the distance measure

∑r
i=1(1 − σi,k)2. The

fastest convergence is obtained for values around α = 0.5
and for α = 0.9 the algorithm shows first signs of instability.
When investigating such smallest singular values we find,
however, a very large variation of them from [10−5, 1] as
depicted in Figure 2. Using a normalized step-size according
to (17) shows that the range of the smallest singular value
can be reduced considerably but at the expense of a very slow
learning rate.

4.2. Second experiment: robust PAST algorithms

In a second experiment we repeated the first experiment with
the robust versions PAST-I to PAST-IV. As expected the (nor-
malized) step-size γk = αγmax,k now ranges up to (or close
to) a maximum value α = 1 for all four algorithms. This is
shown in Figure 3 on the example of the PAST-II algorithm.
Again the fastest convergence is obtained for α = 0.5, now
even faster than in the first experiment.

In Figure 4 the evolution of the smallest singular value is
shown again. It now depicts a substantially smaller range
than before, which indicates the more robust behavior of the
algorithm. Note that the other variants require additional reg-
ularization measures in order to show robust behavior, while
the proposed PAST-II algorithm immediately showed such
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Fig. 2. Evolution of smallest singular value in classic PAST
algorithm under constant step-sizes.
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Fig. 3. PAST-II algorithm under various normalized step-
sizes.

robustness. We therefore display only the results of PAST-II,
as it is the most promising variant.

4.3. Third experiment: tracking behavior

In a third experiment we studied the tracking behavior. To
this end, we added to the three frequencies of the previous
experiment a fourth frequency that varies over time by f4 =
f0 + kδf ; k = 0, 1, ..., kmax. We selected δf = 0.001 such
that there is a strong tracking component. The PAST-II algo-
rithm exhibits the best tracking results in Figure 5.

5. CONCLUSIONS

We presented a novel analysis method for the well known
PAST algorithm. The method allowed us to derive new prop-
erties and even alter the algorithm in such a way that we can
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Fig. 4. Evolution of smallest singular value in the PAST-II
algorithm under various normalized step-sizes.
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Fig. 5. Tracking behavior of the PAST-II algorithm.

guarantee convergence in the mean sense for a range of step-
sizes. The authors believe that the method can be further ex-
tended to incorporate also distributed versions of the algo-
rithm, that rely on one or more consensus algorithms for data
exchange in wireless sensor networks [11, 12].
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