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ABSTRACT 
 
In the human visual system, proximity, similarity, and 
motion are fundamental attributes that group visual objects 
together locally. The objects grouped by these attributes are 
most likely to have the same depth. In previous works, 
proximity and similarity have been considered in the 
computation of image disparity maps. However, they are 
insufficient for video disparity estimation because motion 
cues are very important for accurate depth estimation near 
edges of moving objects. We incorporate motion flow to 
compute each pixel’s support weight, a measure directly 
affecting the accuracy of disparity maps in local methods. 
For robustness to image noise in flat areas, we propose a 
modified census transform with a noise buffer. The 
experimental results show that the proposed method 
produces more accurate disparity maps than current state-of-
the-art methods, both on edges and in flat areas according to 
subjective and objective measures. 
 

Index Terms— stereo matching, disparity, motion flow, 
census transform 
 

1. INTRODUCTION 
 
Stereo depth information is a basic element of the 3D 
interpretation of a scene and disparity estimation is an 
important step in resolving that depth. The area of disparity 
estimation has been thoroughly studied over the past decade, 
and almost all research results have been focused strictly on 
images. The numerous advanced algorithms for image 
disparity estimation may be generally categorized as either 
local or global methods. The former are known to be fast 
and the latter tend to be more accurate. 

While image disparity estimation is mature, video 
disparity estimation, on the other hand, is at an early stage. 
This is the consequence of two main factors: (1) lack of 
video datasets with ground-truth disparity maps and (2) 
temporal inconsistency problems, such as flickering 
resulting from simply applying current state-of-the-art 
image-based algorithms to video. To reduce this artifact, [1] 
uses median filtering along flow vectors computed by the 
method of Horn and Schunck [2]. However, the results are 
of moderate quality. Reference [3] shows impressive results 
by treating the video disparity as a spatio-temporal volume 

to improve spatial and temporal consistency and it presents 
the possibility for directly extending current image-based 
disparity algorithms to the video domain. 

Local methods present themselves as more appropriate 
solutions for video disparity estimation because it often 
requires real-time processing capabilities. In most local 
methods, window-based matching is used to find 
corresponding pixels in a pair of left and right images. 
However, this results in the foreground smearing problem 
near depth discontinuities due to the assumption that all 
pixels in the window have the same disparity. To solve this 
problem, the adaptive-window method [4] finds an optimal 
window based on the local variation of intensity and 
disparity. This method uses a rectangular window, which is 
not suitable for arbitrarily shaped depth discontinuities. The 
multiple-window method [5] calculates the correlation with 
nine pre-defined windows and selects the disparity with the 
smallest matching cost. This method also has the limitation 
of window shape. To obtain more accurate results at depth 
discontinuities, the locally adaptive support weight approach 
(LASW) [6] adjusts the support weights of the pixels in the 
window by using the photometric and geometric distance 
with respect to the center pixel. This method deals with the 
pixels near depth discontinuities more effectively than the 
two methods mentioned above. Cost-filter [7] shows the 
best edge-preserving results by using the guided filter and it 
is a local method that outperforms all other local methods on 
the Middlebury benchmark. However, both LASW and 
Cost-filter do not provide a reliable solution for disparity 
estimation in textureless (flat) areas, which have different 
characteristics from edges. 

In this paper, we propose a more accurate and noise 
tolerant stereo matching approach for video disparity 
estimation. Motion is a crucial factor in video processing 
and generally moving objects tend to have a higher degree 
of saliency. Every disparity algorithm tends to have 
difficulty dealing with moving edges and textureless areas in 
video scenes. We provide an advanced local method by 
using motion cues and a modified census transform with a 
noise buffer to obtain more accurate disparity information in 
the edges of moving objects and to be robust to image noise 
in the textureless areas, respectively. In addition, we enforce 
temporal consistency by refining our disparity estimates 
with the spatio-temporal consistency method described in 
[3]. 
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This paper is organized as follows. The details of our 
proposed method are presented in Section 2. Section 3 
shows experimental results and discusses their significance. 
Section 4 concludes with some remarks. 
 

2. PROPOSED METHOD 
 
2.1. Gestalt Grouping 
 
According to gestalt principles, human observers are able to 
group visual objects that share certain common 
characteristics [8]. The best-known grouping laws are 
proximity (objects that are close to each other are grouped 
together), similarity (objects that have similar color are 
grouped together), and common fate (objects that move at 
the same speed in the same direction are grouped together) 
[9]. Common fate is closely related to motion flow, which 
will be denoted as “motion” for simplicity. Whenever 
objects have characteristics in common, they get grouped 
and form a new, larger visual object, known as a gestalt [8]. 

From these observations, we can assume that human 
observers group pixels in a scene based on how close two 
pixels are spatially, how similar their colors are, and how 
similar their velocities are. Thus, we can use the strength of 
grouping when computing the support weight of a pixel, 
which should be proportional to the probability that the two 
pixels have the same disparity. The closer two pixels are in 
proximity and color, the larger their support weight. The 
same can be said about the motion flows of two pixels. 
These three observations may be treated in an integrated 
manner to obtain a reasonable grouping [6]. Each grouping 
law can compensate for the others when they fail in specific 
cases. For instance, the motion cue helps viewers distinguish 
figures and group them when the object color or outlines are 
not clear. Therefore, we can model the human visual system 
and segment objects by using support weights based on 
gestalt principles. 

 
2.2. Benefits of a motion cue 
 
Consider the example of Fig. 1 for illustration of the 
benefits of using motion cues. We use the LASW method, in 
which proximity and similarity are exploited, and extend it 
to evaluate how the three weighting terms (proximity, 
similarity, and motion) affect the quality of the disparity 
maps. As the local methods require pixel-based computation, 
we use classic optical flow with the weighted non-local term 
[10], which is one of state-of-the-art optical flow methods. 
We exploit the motion to compute the integrated support 
weight similarly as in [6]. The “car” video frames are 
processed at a resolution of 480ⅹ270 with a disparity range 
of 15 and the parameters used are fixed throughout the 
experiment. In Fig. 1, we show the selected left view and its 
optical flow. Fig. 1(c) is obtained by using only the 
proximity term for the support weight, Fig. 1(d) is obtained 
by adding the similarity term, and Fig 1(e) is obtained by  

 

 
Fig. 1. Disparity maps for “Car”; (a) Left view; (b) Optical 

flow; (c) using only proximity; (d) using proximity and 
similarity; (e) using proximity, similarity, and motion 

adding the motion term. In Fig. 1(c), we observe many 
errors in the edges of the moving car (red circle in Fig. 1). In 
Fig. 1(d), some errors are recovered by using the color cue 
but edges are not preserved. In Fig. 1(e), incorporating the 
motion term preserves the edges even though they are 
visually ambiguous. We believe that this is due to the 
preserved background flow as shown in Fig. 1(b). Although 
there is ambiguity in the stereo correspondence, motion 
between a pair of successive video frames is much more 
consistent, especially in a localized window in background 
regions. Additionally, disparity is estimating spatial 
correspondences while motion estimates temporal 
correspondences, so the additional information promotes 
disambiguation. Consequently, the results in Fig. 1 imply 
that the support weight integrating the motion cue yields 
more accurate disparity estimates, especially near the edges 
of moving objects. 
 
2.3. Support weight using correlated color and motion 
 
Based on the main gestalt principles, the support weight 
using similarity and motion can be expressed as 

 ( , ) ( , )cq cqw c q f s m= ∆ ∆  (1) 

where the function f represents the strength of grouping and 
cqs∆  and cqm∆  represent the color difference (a measure of 

similarity) and motion difference between the center pixel c 
and the neighbor pixel q, respectively. The color difference 
is computed by the Euclidean distance between pixel values 
in the CIELab color space, which gives a three dimensional 
representation for color perception. Let ( , , )c c c cs L a b=  and 

( , , )q q q qs L a b=  be the color coordinates of pixel c and pixel 
q in the CIELab color space, respectively, as shown in Fig. 2. 
Then, cqs∆  is calculated by 

 
2 2 2( ) ( ) ( ) .cq c q c q c qs L L a a b b∆ = − + − + −

 
(2) 
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Fig. 2. Left support window and right support window 

The second term is the motion difference, which is a 
measure of motion flow. There are two types of motion 
difference computation: absolute flow endpoint difference 
(ED) and angular difference (AD) [11]. We use ED because 
AD penalizes errors in larger flows less than errors in small 
ones [11], which is undesirable. Let ( , )c c cm u v=  and 

( , )q q qm u v=  be the flow vectors of pixel c and pixel q, 
respectively. We use a truncated motion difference: 

 

2 2min ( ) ( ) ,cq c q c qm u u v v τ ∆ = − + −   
(3) 

where τ  is a truncation value. Such a model reduces the 
influence of flow outliers just as the truncated matching cost 
limits the influence of wrong matches [12]. We must keep in 
mind that the optical flow is an estimated value and cannot 
be completely error free. 

The strength of grouping by similarity is defined using 
Laplacian kernel as 

 ( ) exp( )cq
p cq

s

s
f s

γ
∆

∆ = −  (4) 

with sγ  being an empirical similarity parameter. The 
strength of grouping by motion can be defined in the same 
manner. We suggest a correlated model for the integrated 
support weight as 

 ( , ) exp( ) exp( ).
cq

s

s
cq cq

m s

m s
w c q γ

γ γ

∆∆ ∆
= − −  (5) 

This model originates from the intuition that the gestalt 
principles tend to correlate with each other in general. For 
example, the center pixel and its neighboring pixel have a 
high likelihood of having different motion vectors if they 
also differ significantly in color, as expected near object 
edges. When this occurs, the correlated model decreases the 
overall support weight as compared with the independent 
model, as in [6], since the Laplacian is raised to a power 
based on the large color difference. Additionally, the two 
pixels are likely to have similar motion if they also have the 
same color, as in the flat areas of an object surface. In this 
case, we can also expect to find a positive correlation  

 
Fig. 3. Example of modified census transform with α=1 

among the two metrics. Therefore, the support weight will 
increase in reference to the independent model. However, 
while color is an observed quantity, motion is an estimated 
value. Therefore, color should take precedence over motion 
when there is a discrepancy between the two of them and 
the correlation assumption fails. This is precisely what the 
model in (5) enforces. For example, if there is a large 
difference in color but a small one in motion, then the value 
for the correlated support weight is decreased. Therefore, 
the support weight depends more on the color cue than the 
motion cue. In contrast, the independent model always treats 
all of the gestalt principles equally. We verify through 
simulation that the correlated model generally improves the 
overall performance of video disparity estimation. 
 
2.4. Modified census transform 
 
The census transform is robust to radiometric distortions. In 
addition, from the evaluation results of [13], the census 
transform applied to raw matching cost computation shows 
the best overall performance in both local and global 
methods. However, it experiences difficulties in finding the 
correct correspondences in flat areas, as most methods do. 
This difficulty is due to the fact that the census matching 
cost is extremely sensitive to image noise since all pixels in 
flat areas have a similar intensity. To solve this problem, we 
proposed a three moded census transform with a noise 
buffer. The original census has two modes where a bit is set 
to 1 if the neighboring pixel in the census window has a 
higher intensity than the center pixel and 0 otherwise.  On 
the other hand, our modified census uses two bits to 
implement three modes, where the two bits are set to 10 if 
the neighboring pixel has an intensity value higher than the 
center pixel by noise buffer threshold (α), 01 if the 
neighboring pixel’s intensity is lower than the center pixel 
by α, and 00 otherwise. Recognizing that noise levels are 
not linearly related to image intensity values, we set a 
different noise buffer value for each intensity band. For 
instance, α is set to 0 if the intensity value is between 0 to 
50 and it is set to 1 if the intensity value is between 50 and 
100 (2, 3 and 4 for 100~150, 150~200 and 200~255, 

1116



respectively). The Hamming distance is then calculated by 
the bitwise XOR operation upon the left and right census 
transformed bit strings. To further improve the matching 
accuracy, we incorporate the intensity difference (|IL-IR|) 
between two center pixels as shown in Fig. 3. In other words, 
we use the census transform to compare the spatial structure 
of two census windows, while we use the intensity 
difference to compare two center pixel values. For the 
integrated raw matching cost, we consider two distances 
(Hamming distance and intensity difference) in the same 
way as with color and motion discussed above. At a true 
correspondence when both the spatial structure and the 
center pixel intensity of the left window match those of the 
right window, the matching cost has the lowest value. The 
raw matching cost is expressed as 

 0 ( , ) 1 exp( ) exp( )
qqd

d dH

H
qq qq

d
I H

I H
C q q γ

γ γ

∆∆ ∆
= − − −  (6) 

where 
dqqI∆ and

dqqH∆  are intensity difference and 
Hamming distance, respectively, between pixel q and pixel 
qd as shown in Fig. 2. Iγ  and Hγ are empirical parameters. 
The support weight and the raw matching cost are inversely 
proportional but possess a similar formulation. We use the 
example of Fig. 4 to evaluate how the modified census 
improves the disparity map. In Fig. 4, we show the left view 
and three disparity maps; Fig. 4(b) is computed by the 
original census, Fig. 4(c) is computed by the modified 
census without incorporating intensity, and Fig. 4(d) is 
computed by the full modified census. In Fig. 4(a), there is a 
flat area highlighted with the red box. The original census 
exhibits some errors in that area as shown in Fig. 4(b) but 
the modified census without intensity recovers them. Finally, 
the modified census, incorporating intensity, shows the best 
quality of disparity map as shown in Fig. 4(d). 
 
2.5. Aggregation and disparity computation 
 
Once the support weights are calculated, the aggregated 
matching cost between pixels is computed by aggregating 
the raw costs, scaled by the support weights in the window. 
If we consider only the left support window, the cost 
computation may be erroneous since the right support 
window may have pixels from different depth levels. To 
minimize such errors, the matching cost is computed by 
combining the support weights of both support windows as 
in [6]. The aggregated matching cost between pixel c  and 
pixel dc  in Fig. 2 is given in the weighted mean form: 

 

0
,

,

( , ) ( , ) ( , )
( , )

( , ) ( , )
c d cd

c d cd

d d d
q W q W

d
d d

q W q W

w c q w c q C q q
A c c

w c q w c q
∈ ∈

∈ ∈

⋅ ⋅

=
⋅

∑

∑
 

(7) 

 

 
Fig. 4. Disparity map for “Tanks”; (a) Left view; (b) 

Original census; (c) Modified cenus without incorporating 
intensity; (d) Modified census. 

where cW  and 
dcW  represent the left and right support 

windows, respectively, and the function ( , )d dw c q  is the 
support weight of pixel dq  in the right window.  

After the aggregated matching costs have been 
computed within the disparity range, the disparity map is 
obtained by determining the disparity pd  of each pixel p 
through the Winner-Takes-All (WTA) algorithm: 

 
arg min ( , )p d

d D
d A c c

∈
=

 
(8) 

where D represents the set of all possible disparities. 
 

3. EXPERIMENTS AND RESULTS 
 
To assess the performance of our proposed method 
quantitatively, we use 5 synthetic stereo videos (400ⅹ300, 
64 disparity range) with ground truth disparity [14]. We 
compare three methods (LASW, Cost-filter, and our method) 
without post-processing to compare their pure performance. 
The LASW method ranks 53rd and the Cost-filter, the best 
performing local method ranks 16th on the Middlebury 
benchmark. Both methods do not perform any iterative 
process, just as in our method. The parameters are set to 
constant values: 17sγ = , 1mγ = , 3Iγ = , 20Hγ = , and 

1τ = . The size of the support and census windows are set to 
11ⅹ11 and 7ⅹ7, respectively. Table 1 shows the average 
percentage of bad pixels (threshold of 1) over all frames. 
We ignore borders when computing statistics since they lack 
correspondences. Table 1 illustrates that the proposed 
method, using the motion cue and modified census has the 
best performance on all datasets except for “street.”  

To assess the performance of the proposed method 
subjectively, we perform experiments on a real-world video, 
“Jamie1,” a scene from the Microsoft i2i database 
(320ⅹ240, 64 disparity range). These video frames contain 
large flat areas and repetitive patterns, as shown in Fig. 5. 
Fig. 5(b) shows the disparity maps produced by LASW, Fig. 
5(c) shows the disparity maps produced by Cost-filter, and 
Fig. 5(d) shows the disparity maps produced by our 
proposed method. Fig. 5 illustrates that the proposed method  
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Video/ 

# of Frames LASW Cost-filter Our 
method 

Tunnel/99 1.382 % 2.157 % 1.032 % 
Temple/99 12.530 % 10.700 % 10.164 % 
Book/40 6.102 % 4.919 % 4.758 % 
Street/99 9.907 % 7.305 % 7.619 % 
Tanks/99 5.591 % 4.826 % 4.803 % 

Table 1. Performance comparison of methods 
 

 
Fig. 5. Disparity map for “Jamie1”; (a) Left frames; (b) 

LASW; (c) Cost-filter; (d) Our method. 

exhibits the best quality of disparity map. On the other hand, 
LASW yields the worst quality. Cost-filter produces many 
errors in flat and repetitive areas. 

In our method, it takes about 19s to compute the 
disparity map for a stereo pair with 400ⅹ300 resolution, as 
used in Table 1. Our method has a similar framework to [6] 
and it has been shown in [15] that [6] can be adopted into a 
real-time application by using a Graphics Processing Unit 
(GPU). Thus, the same could be done with our work. 

Although not tabulated due to limited space, 
refinement using the TV method [3] reduces errors such as 
spatial noise and temporal inconsistencies in the background 
significantly. For more results, please refer to our website: 
http://videoprocessing.ucsd.edu/~zucheul/laswm. 
 

4. CONCLUSION 
 
An accurate local stereo matching method using motion cue 
and modified census transform for video disparity 
estimation is proposed in this paper. In the local window 
methods, the accuracy of the disparity map depends on the 
support weight and the raw matching cost. To compute more 
accurate support weights, we consider object motion and 
suggest a correlated model. To obtain more reliable raw 
matching costs in flat areas, modified census with a noise 

buffer incorporating intensity is used. Simulation results 
verify that the proposed method outperforms previous works. 
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