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ABSTRACT
For the space of bounded bandlimited signals a definition of the
Hilbert transform by the usual Hilbert transform integral is not pos-
sible, because the integral diverges for certain bounded bandlimited
signals. There are other ways to define the Hilbert transform mean-
ingfully. Recently, it was shown that, for bounded bandlimited sig-
nals, a simple formula can be used to calculate the Hilbert trans-
form. However, the Hilbert transform of a bounded bandlimited sig-
nal is not necessarily bounded again. In this paper, we completely
characterize the bounded bandlimited signals that have a bounded
Hilbert transform by giving a necessary and sufficient condition for
the boundedness. Further, we use this condition to prove that there
exist bounded bandlimited signals that even vanish at infinity, the
Hilbert transform of which is unbounded.

Index Terms— Hilbert transform, bounded bandlimited signal,
peak value, analytical signal

1. INTRODUCTION AND NOTATION

The Hilbert transform is an important tool in communication the-
ory and signal processing. For example, the “analytical signal”
[1], which was introduced in Dennis Gabor’s “Theory of Commu-
nication” [2], and the definition of the instantaneous amplitude,
frequency, and phase of a signal [3, 4, 1] are based on the Hilbert
transform. Further, the Hilbert transform is used in the theory of
modulation [5, 1]. Classically, the Hilbert transform of a smooth
signal f with compact support is defined as the principal value
integral

(Hf)(t) =
1

π
V.P.
∫ ∞
−∞

f(τ)

t− τ dτ =
1

π
lim
ε→0

∫
ε≤|t−τ |≤ 1

ε

f(τ)

t− τ dτ

=
1

π
lim
ε→0

(∫ t−ε

t− 1
ε

f(τ)

t− τ dτ+

∫ t+ 1
ε

t+ε

f(τ)

t− τ dτ

)
. (1)

In general, the principal value integral (1) cannot be used to define
the Hilbert transform for bounded signals in L∞(R), because there
are signals in L∞(R) such that (1) diverges for all t ∈ R. For exam-
ple, for the bounded bandlimited signal

fL(t) = − 2

π

∫ π

0

sin(ωt)

ω
dω,

which is closely related to the sine integral, we have for all t ∈ R
1

π
lim
ε→0

∫
ε≤|t−τ |≤ 1

ε

fL(τ)

t− τ dτ =∞.
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Note that this result does not imply that the Hilbert transform cannot
be defined for the space of bounded bandlimited signals. There may
be other definitions, apart from the principal value integral definition
(1) that are meaningful.

A class of signals for which the Hilbert transform as principal
value integral (1) exists and is bounded, are bounded bandpass sig-
nals. If f is a bandpass signals, the distributional Fourier transform
of which vanishes outside [−π,−επ] ∪ [επ, π], 0 < ε < 1, then f
has a bounded Hilbert transform satisfying

‖Hf‖∞ ≤
(
A+

2

π
log

(
1

ε

))
‖f‖∞,

where A < 4/π is a constant [6, 5]. That is, the upper bound on the
peak value of the Hilbert transform diverges as ε tends to zero. Prob-
ably, observations of this kind led to the misbelief “that an arbitrary
bounded bandlimited function does not have a Hilbert transform. . . ”
[5, p. 502].

Regardless of the convergence problems of the principal value
integral (1), the Hilbert transform can be meaningfully defined for
signals in L∞(R), by using Fefferman’s duality theorem [7]. Unfor-
tunately, this rather abstract definition does not provide a construc-
tive procedure for the calculation of the Hilbert transform. We do not
go further into this definition, because it was shown in [8] that for
the subspace of bounded bandlimited signals B∞π a much simpler,
constructive approach can be taken for the calculation of the Hilbert
transform. This approach will be presented in Section 2.

A main result of this new theory is that the Hilbert transform of
a bounded bandlimited signal is again bandlimited but not necessar-
ily bounded. That is, the peak value of the Hilbert transform can
be arbitrarily large. The peak value is a basic characteristic of sig-
nals. In many applications it is crucial to control the peak value. For
example, in wireless communication systems high peak-to-average
power ratios (PAPRs) are problematic because high peak values can
overload the power amplifiers, which in turn leads to undesired out-
of-band radiation. For this reason it is important to characterize the
signals that have a bounded Hilbert transform.

In this paper we study the Hilbert transform for bounded ban-
dlimited signals, and provide a simple test for the boundedness of
the Hilbert transform. Further, we completely characterize the sig-
nals for which the integral (1) diverges unboundedly and identify a
large class of signals for which the integral (1) converges.

We need some definitions and notation. By Lp(R), 1 ≤ p <∞,
we denote the space of all pth-power Lebesgue integrable functions
on R, with the usual norm ‖ · ‖p, and by L∞(R) the space of all
functions for which the essential supremum norm ‖ · ‖∞ is finite.
For 0 < σ < ∞ let Bσ be the set of all entire functions f with the
property that for all ε > 0 there exists a constantC(ε) with |f(z)| ≤
C(ε) exp((σ + ε)|z|) for all z ∈ C. The Bernstein space Bpσ , 1 ≤
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p ≤ ∞, consists of all functions in Bσ , whose restriction to the real
line is in Lp(R). The norm for Bpσ is given by the Lp-norm on the
real line, i.e., ‖ · ‖Bpσ = ‖ · ‖p. A signal in Bpσ is called bandlimited
to σ, and B∞σ is the space of bandlimited signals that are bounded
on the real axis. We call a signal in B∞π bounded bandlimited signal.

2. THE HILBERT TRANSFORM FOR B∞π

The Hilbert transform of a general bounded signal can be meaning-
fully defined by using Fefferman’s duality theorem, which states that
the dual space of H1 is BMO(R) 1. In this definition, the Hilbert
transform Hf of f ∈ L∞(R) is a function in BMO(R), which is
only unique up to an arbitrary additive constant CBMO

2.
Next, we present a constructive approach for the calculation of

the Hilbert transform Hf for signals in B∞π . A key ingredient is the
operator QE : B∞π → B∞π , defined by

(QEf)(z) =

∞∑
k=−∞

akf(z − k), z ∈ C, (2)

where the coefficients ak, k ∈ Z, are given by

ak =

{
π
2
, k = 0,

(−1)k−1

πk2
, k 6= 0.

It can be shown [8] that QE : B∞π → B∞π is a bounded linear op-
erator with norm ‖QE‖ = π. Further, since QE : B∞π → B∞π is a
bounded linear operator, the operator I given by

(If)(z) =

∫
Γ(0,z)

(QEf)(ξ)dξ, z ∈ C, (3)

where Γ(0, z) is an arbitrary piecewise smooth curve in the complex
plane from 0 to z, is well defined for every f ∈ B∞π .

For bandlimited signals with finite energy, i.e., signals in B2
π ,

the operator QE is nothing else than the concatenation of the Hilbert
transform H and the differential operator D, i.e., QE = DH . Thus,
for g ∈ B2

π , the integral of QEg as in (3) gives—up to a constant—
the Hilbert transform Hg of g. More precisely, for g ∈ B2

π we have

(Ig)(t) =

∫ t

0

(QEg)(τ)dτ =

∫ t

0

(Qg)(τ)dτ

=

∫ t

0

(DHg)(τ)dτ = (Hg)(t)− (Hg)(0). (4)

That is, for every signal g ∈ B2
π , we have (Hg)(t) = (Ig)(t) +

C1(g), t ∈ R, where C1(g) is a constant that depends on g.
Based on this observation it is natural to assume that, for signals

f ∈ B∞π , the integral If is somehow connected to the Hilbert Hf
transform of f . In [8], it was shown that such a connection exists
in the sense that Hf = If + CBMO, where CBMO is an arbitrary
constant 3.

Theorem 1. Let f ∈ B∞π . Then we have Hf = If+CBMO. Further,
the Hilbert transform is again bandlimited, because If ∈ Bπ .

1For details and a definition of the spacesH1 and BMO(R), see [9].
2In a strict mathematical sense, the Hilbert transform in this definition is

not a function but an equivalence class that contains all functions that differ
only by a constant. (Hence, we use a different notation Hf .) For technical
details see [8, 10].

3More precisely, If is a representative of the equivalence class Hf .

Theorem 1 is very useful, because it enables us to compute the
Hilbert transform of a bounded bandlimited signals by using the con-
structive formula (3), instead of using the abstract definition which is
based on the H1-BMO(R) duality. Note that If is well defined for
all signals f ∈ B∞π , which also means that (If)(t) can be computed
and is finite for all t ∈ R.

3. CONDITION FOR THE BOUNDEDNESS OF THE
HILBERT TRANSFORM

Thanks to Theorem 1, we can use the simple formula (3) to compute
the Hilbert transform of bounded bandlimited signal. In [8, 10] the
properties of If , i.e., of the Hilbert transform, were studied for sig-
nals f ∈ B∞π . It was found that there exists a signal f1 ∈ B∞π such
that If1 is unbounded on the real axis. Thus, the Hilbert transform
of a bounded bandlimited signal is again a bandlimited (Theorem 1)
but not necessarily a bounded signal.

For practical applications is important to know when the Hilbert
transform is bounded. Theorem 2 gives a necessary and sufficient
condition for the boundedness of the Hilbert transform.

Theorem 2. Let f ∈ B∞π be real-valued. We have If ∈ B∞π if and
only if there exists a constant C2 such that∣∣∣∣∣ 1π

∫
ε≤|t−τ |≤ 1

ε

f(τ)

t− τ dτ

∣∣∣∣∣ ≤ C2 (5)

for all 0 < ε < 1 and all t ∈ R.

Remark 1. By Theorem 2 we have a complete characterization of
the signals in B∞π that have a bounded Hilbert transform. Theorem 2
further shows that the unbounded divergence of the principal value
integral is connected to the unboundedness of the Hilbert transform.

For the proof of Theorem 2 we need Lemma 1.

Lemma 1. Let f ∈ B∞π and If ∈ B∞π . Then, for F = f + iIf , we
have |F (t+ iy)| ≤ ‖F‖∞ for all t ∈ R and y ≥ 0.

Proof. Let t ∈ R and y > 0 be arbitrary but fixed. Since f ∈ B∞π
and If ∈ B∞π , we have F ∈ B∞π and therefore the integral

1

π

∫ ∞
−∞

F (τ)
y

y2 + (t− τ)2
dτ

is absolutely convergent. It can be shown that

F (t+ iy) =
1

π

∫ ∞
−∞

F (τ)
y

y2 + (t− τ)2
dτ.

Then, it follows that

|F (t+ iy)| ≤ 1

π

∫ ∞
−∞
|F (τ)| y

y2 + (t− τ)2
dτ

≤ ‖F‖∞
1

π

∫ ∞
−∞

y

y2 + (t− τ)2
dτ = ‖F‖∞.

Proof of Theorem 2. Since the “⇐” direction is not needed in the
rest of the paper, it is omitted, due to space constraints. It follows
the proof of the “⇒” direction. Let f ∈ B∞π be real-valued, such that
If ∈ B∞π . Further, let ε with 0 < ε < 1 and t ∈ R be arbitrary but
fixed, and consider the complex contour that is depicted in Fig. 1.
Since F = f + iIf is an entire function, we have according to
Cauchy’s integral theorem that∫

Pε,t

F (ξ)

t− ξ dξ = 0.
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t t+εt−ε t+ 1
ε

t− 1
ε

Pε,t

z-plane

Fig. 1. Integration path Pε,t in the complex plane.

Further, we have∫
Pε,t

F (ξ)

t− ξ dξ =

∫
F (ξ)

t− ξ dξ +

∫
F (ξ)

t− ξ dξ +

∫
F (ξ)

t− ξ dξ.

Thus, it follows that∫
F (ξ)

t− ξ dξ = −
∫

F (ξ)

t− ξ dξ −
∫

F (ξ)

t− ξ dξ. (6)

Next, we analyze the two integrals on the right hand side of (6). For
the first integral we have∫

F (ξ)

t− ξ dξ =

∫ 0

−π

F (t+ ε eiφ)

ε eiφ
iε eiφ dφ

= i

∫ 0

−π
F (t+ ε eiφ)dφ, (7)

and consequently∣∣∣∣∣
∫

F (ξ)

t− ξ dξ

∣∣∣∣∣ ≤ π sup
Im(z)≥0

F (z) ≤ π‖F‖∞, (8)

where we used Lemma 1 in the last inequality. For the second inte-
gral, a similar calculation yields∣∣∣∣∣

∫
F (ξ)

t− ξ dξ

∣∣∣∣∣ ≤ π‖F‖∞. (9)

Combining (6), (8), and (9), we obtain
∣∣ 1
π

∫ F (ξ)
t−ξ dξ

∣∣ ≤ 2‖F‖∞.

Since |Re z| ≤ |z| for all z ∈ C and f is real-valued, this implies
that

∣∣ 1
π

∫ f(ξ)
t−ξ dξ

∣∣ ≤ 2‖F‖∞, which completes the proof of the

“⇒” direction.

4. SIGNAL WITH UNBOUNDED HILBERT TRANSFORM

We can use Theorem 2 to show that the Hilbert transform of the
signal

f1(t) = −1

2

∫ π

0

1

log
(

2π
ω

) sin(ωt)

ω
dω,

which is plotted in Fig. 2, is unbounded. f1 is a bounded bandlimited
signal that satisfies lim|t|→∞ f1(t) = 0, i.e., vanishes on the real
axis at infinity.
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−0.5
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0.5

t

f 1
(t

)

Fig. 2. Plot of the signal f1.

Theorem 3. We have ‖Hf1‖∞ =∞.

Proof. According to Theorem 1, it suffices to show that ‖If1‖∞ =
∞. We use an indirect proof and show that the assumption
‖If1‖∞ <∞ leads to a contradiction.

Assume that ‖If1‖∞ < ∞. Since f1 ∈ B∞π , we have If1 ∈
B∞π , due to Theorem 1. Therefore, Theorem 2 implies that there
exists a constant C2 such that∣∣∣∣∣ 1π

∫
ε≤|τ |≤ 1

ε

f1(τ)

−τ dτ

∣∣∣∣∣ ≤ C2 (10)

for all 0 < ε < 1. Next, we analyze the integral in (10). Let
0 < ε < 1 be arbitrary but fixed. Since f(−t) = −f(t), t ∈ R, we
have ∫

ε≤|τ |≤ 1
ε

f1(τ)

−τ dτ = −2

∫ 1/ε

ε

f1(τ)

τ
dτ, (11)

and further

−2

∫ 1/ε

ε

f1(τ)

τ
dτ =

∫ 1/ε

ε

1

τ

∫ π

0

1

log
(

2π
ω

) sin(ωτ)

ω
dωdτ

=

∫ π

0

1

log
(

2π
ω

) ∫ 1/ε

ε

sin(ωτ)

ωτ
dτdω. (12)

The order of integration was exchanged according to Fubini’s theo-
rem, which can be applied because∫ π

0

∫ 1/ε

ε

∣∣∣∣∣ sin(ωτ)

ωτ log
(

2π
ω

) ∣∣∣∣∣ dτdω ≤
∫ π

0

∫ 1/ε

ε

∣∣∣∣∣ 1

log
(

2π
ω

) ∣∣∣∣∣ dτdω

≤
(

1

ε
− ε
)
π

1

log(2)
<∞,

were we used |sin(t)/t| ≤ 1, for all t ∈ R. Moreover, we have∫ π

0

1

log
(

2π
ω

) ∫ 1/ε

ε

sin(ωτ)

ωτ
dτdω

=

∫ π

0

1

log
(

2π
ω

) (∫ 1/ε

0

sin(ωτ)

ωτ
dτ −

∫ ε

0

sin(ωτ)

ωτ
dτ

)
dω

≥
∫ π

0

1

log
(

2π
ω

) ∫ 1/ε

0

sin(ωτ)

ωτ
dτdω − C3, (13)
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because∫ π

0

1

log
(

2π
ω

) ∫ ε

0

sin(ωτ)

ωτ
dτdω ≤ επ

log(2)
=: C3,

which follows from∫ ε

0

sin(ωτ)

ωτ
dτ ≤ ε, ω ∈ [0, π],

and the fact that 1/ log (2π/ω) is monotone increasing and non-
negative for ω ∈ [0, π]. Combining (11),(12), and (13), we therefore
obtain∫
ε≤|τ |≤ 1

ε

f1(τ)

−τ dτ ≥
∫ π

0

1

log
(

2π
ω

) ∫ 1/ε

0

sin(ωτ)

ωτ
dτ︸ ︷︷ ︸

=:g(ω,ε)

dω − C3,

which holds for all 0 < ε < 1, because 0 < ε < 1 was arbitrary.
Let 0 < a < 1 be arbitrary but fixed. Since g(ω, ε) ≥ 0 for all
ω ∈ [0, π] and 0 < ε < 1, we can apply Fatou’s Lemma to obtain

lim inf
ε→0

∫ π

0

g(ω, ε)dω ≥ lim inf
ε→0

∫ π

a

g(ω, ε)dω

≥
∫ π

a

lim inf
ε→0

g(ω, ε)dω =

∫ π

a

1

log
(

2π
ω

) π
2ω

dω

=
π

2
log

(
log
(

2π
a

)
log (2)

)
, (14)

where we used in the first equality that

lim
ε→0

∫ 1/ε

0

sin(ωτ)

ωτ
dτ =

1

ω
lim
ε→0

∫ ω/ε

0

sin(ξ)

ξ
dξ =

π

2ω

for all ω ∈ [a, π]. Since (14) is valid for all 0 < a < 1 and

lim
a→0

π

2
log

(
log
(

2π
a

)
log (2)

)
=∞,

it follows that lim infε→0

∫ π
0
g(ω, ε)dω = ∞, and consequently

that

lim
ε→0

∫
ε≤|τ |≤ 1

ε

f1(τ)

−τ dτ =∞,

which is a contradiction to (10).

In the proof of Theorem 3 we have seen that the Hilbert trans-
form integral (1) diverges unboundedly for the signal f1 and t = 0.
However, this divergence is not restricted to t = 0. It can be shown
that the divergence occurs for all t ∈ R.

5. CONVERGENCE OF THE HILBERT TRANSFORM
INTEGRAL

Theorem 2 characterizes when If is bounded. It links the bound-
edness of If to the boundedness of the principal value integral (1).
However, it makes no statement about the convergence of the prin-
cipal value integral (1). This convergence is treated in the next the-
orem. In Theorem 4 we characterize a subset of the bounded ban-
dlimited signals, for which the integral (1) converges, and thus give
a sufficient condition for being able to calculate the Hilbert transfor-
mation (modulo an additive constant) by the integral (1).

Theorem 4. Let f ∈ B∞π,0 be real-valued. If If − CI ∈ B∞π,0 for
some constant CI, then we have

lim
ε→0

1

π

∫
ε≤|t−τ |≤ 1

ε

f(τ)

t− τ dτ = (If)(t)− CI

and

lim
ε→0

1

π

∫
ε≤|t−τ |≤ 1

ε

(If)(τ)

t− τ dτ = f(t)

for all t ∈ R.

For the proof of Theorem 4 we need the following lemma.

Lemma 2. Let f ∈ B∞π,0 such that If−CI ∈ B∞π,0 for some constant
CI, and let FCI (t + iy) = f(t + iy) + i((If)(t + iy) − CI).
Then, for all ε > 0 there exists a natural number R0 = R0(ε)
such that |FCI (t + iy)| < ε for all t ∈ R and y ≥ 0, satisfying√
t2 + y2 ≥ R0.

Proof. Consider the Möbius transformation φ(z) = (z − i)/(z +
i), which maps the upper half plane to the unit disk. The inverse
mapping is given by φ−1(z) = i(1 + z)/(1 − z). Since FCI is
analytic in C and |FCI (t+ iy)| ≤ ‖FCI‖∞ for all t ∈ R and y ≥ 0,
according to Lemma 1, it follows that

G(z) = FCI (φ−1(z)) = FCI

(
i
1 + z

1− z

)
is analytic for |z| < 1 and that sup|z|<1|G(z)| < ∞. Further, G is
continuous on the unit circle, because FCI is continuous on the real
axis,

lim
ω↘0

G(eiω) = lim
t→−∞

FCI (t) = 0, (15)

and
lim
ω↗0

G(eiω) = lim
t→∞

FCI (t) = 0. (16)

Hence, by [11, p. 340, Theorem 17.11], we have

G(ρ eiθ) =
1

2π

∫ π

−π
G(eiω)

1− ρ2

1− 2ρ cos(ω − θ) + ρ2
dω

for all 0 ≤ ρ < 1 and −π < θ < π.
Let ε > 0 be arbitrary but fixed. Equations (15) and (16) imply

that there exits a ω0 = ω0(ε), 0 < ω0 < π, such that

|G(eiω)| < ε

2
(17)

for all |ω| ≤ ω0. Further, there exists a ρ0 = ρ0(ε), 0 < ρ0 < 1,
such that

‖FCI‖∞(1− ρ)

ρ
(
1− cos

(
ω0
2

)) < ε

2
(18)

for all ρ0 ≤ ρ < 1.
Next, let ρ satisfying ρ0 ≤ ρ < 1, and θ satisfying −ω0/2 ≤

θ ≤ ω0/2, be arbitrary but fixed. Then, we have

|G(ρ eiθ)| ≤ 1

2π

∫ ω0

−ω0

|G(eiω)| 1− ρ2

1− 2ρ cos(ω − θ) + ρ2
dω

+
1

2π

∫
ω0≤|ω|≤π

|G(eiω)| 1− ρ2

1− 2ρ cos(ω − θ) + ρ2
dω

<
ε

2
+
‖FCI‖∞

2π

∫
ω0≤|ω|≤π

1− ρ2

1− 2ρ cos(ω − θ) + ρ2
dω,
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φ−1

1ρ0

ω0

D

R0

φ−1(D)

Fig. 3. Visualization of the set φ−1(D).

where we used (17) and the fact [11, p. 233] that

1

2π

∫ π

−π

1− ρ2

1− 2ρ cos(ω − θ) + ρ2
dω = 1.

Further, we have

‖FCI‖∞
2π

∫
ω0≤|ω|≤π

1− ρ2

1− 2ρ cos(ω − θ) + ρ2
dω

≤ ‖F
CI‖∞
2π

∫
ω0≤|ω|≤π

1− ρ2

1− 2ρ cos
(
ω0
2

)
+ ρ2

dω

<
‖FCI‖∞(1− ρ2)

1− 2ρ cos
(
ω0
2

)
+ ρ2

=
‖FCI‖∞(1− ρ)(1 + ρ)

(1− ρ)2 + 2ρ
(
1− cos

(
ω0
2

))
<
‖FCI‖∞(1− ρ)

ρ
(
1− cos

(
ω0
2

)) < ε

2
,

where we used (18) in the last inequality. Hence, it follows that
|G(ρ eiθ)| < ε for all ρ0 ≤ ρ < 1 and −ω0/2 ≤ θ ≤ ω0/2. Let
D = {ρ eiθ : ρ0 ≤ ρ < 1,−ω0/2 ≤ θ ≤ ω0/2}. Thus, for z ∈
φ−1(D), we have FCI (z) < ε. The image of D under the mapping
φ−1 is depicted in Figure 3. Finally, let R0 be the radius of the
smallest circle around the origin, whose restriction to the upper half
plane lies completely in φ−1(D). Then, we have |FCI (t+ iy)| < ε
for all t ∈ R and y ≥ 0, satisfying

√
t2 + x2 ≥ R0.

Now we are in the position to prove Theorem 4

Proof of Theorem 4. Let f ∈ B∞π,0 be real-valued, such that If −
CI ∈ B∞π,0 for some constant CI. Further, let t ∈ R be arbitrary but
fixed. Since FCI = f + i(If − CI) ∈ Bπ is an entire function,
we can use the same argumentation as in the proof of Theorem 2 to
obtain∫

FCI (ξ)

t− ξ dξ = −
∫

FCI (ξ)

t− ξ dξ −
∫

FCI (ξ)

t− ξ dξ. (19)

From (7) we see that limε→0

∫ FCI (ξ)
t−ξ dξ = πiFCI (t). Let δ > 0

be arbitrary but fixed. Then, according to Lemma 2, there exists a
natural number R0 = R0(δ) such that |FCI (t+ iy)| < δ for all t ∈
R and y ≥ 0, satisfying

√
t2 + y2 ≥ R0. Let ε0 = 1/(R0 + |t|).

Then it follows that
∣∣t+ 1

ε
eiφ
∣∣ ≥ R0 for all 0 < ε ≤ ε0 and

consequently that
∣∣FCI

(
t+ 1

ε
eiφ
)∣∣ < δ for all 0 < ε ≤ ε0 and

0 ≤ φ ≤ π. It follows that∣∣∣∣∣
∫

FCI (ξ)

t− ξ dξ

∣∣∣∣∣ ≤
∫ π

0

∣∣∣∣FCI

(
t+

1

ε
eiφ
)∣∣∣∣ dφ ≤ πδ

for all 0 < ε ≤ ε0, which shows that

lim
ε→0

∫
FCI (ξ)

t− ξ dξ = 0.

Hence, it follows that

lim
ε→0

1

π

∫
FCI (ξ)

t− ξ dξ = −iFCI (t), (20)

which in turn implies that the real part of the left hand side of (20)
converges to the real part of the right hand side of (20), i.e., that

lim
ε→0

1

π

∫
f(ξ)

t− ξ dξ = (If)(t),

and that the imaginary part of the left hand side of (20) converges to
the imaginary part of the right hand side of (20), i.e., that

lim
ε→0

1

π

∫
(If)(ξ)− CI

t− ξ dξ = lim
ε→0

1

π

∫
(If)(ξ)

t− ξ dξ = f(t).
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