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ABSTRACT 

 

One of the popular methods for content-based music 

similarity estimation is to model timbre with MFCC as a 

single multivariate Gaussian with full covariance matrix, 

then use symmetric Kullback-Leibler divergence. From the 

field of speech recognition, we propose to use the same 

approach on the MFCCs’ time derivatives to enhance the 

timbre model. The Gaussian models for the delta and 

acceleration coefficients are used to create their respective 

distance matrix. The distance matrices are then combined 

linearly to form a full distance matrix for music similarity 

estimation. In our experiments on two datasets, our novel 

approach performs better than using MFCC alone. 

Moreover, performing genre classification using k-NN 

showed that the accuracies obtained are already close to the 

state-of-the-art. 

 

Index Terms— MFCC, music similarity estimation  

 

1.  INTRODUCTION 

 

Digital technology and the Internet have changed the music 

industry landscape. The increased accessibility of music has 

allowed consumers to store and share thousands of files on 

their computer’s hard disk, portable media player, mobile 

phone and other devices. Given the large music collections 

available, there is a need for new applications for browsing, 

organising, discovering as well as generating playlists for 

users. The research field of Music Information Retrieval 

(MIR) aims to address these challenges by using content-

based techniques for performing tasks such as audio music 

similarity estimation and genre classification. 

Generally, the essential music dimension used in 

content-based approaches is timbre. Timbre can be defined 

as “the character or quality of a musical sound or voice as 

distinct from its pitch and intensity” [1].  It depends on the 

perception of the quality of sounds, which is related to the 

used musical instruments, with possible audio effects, and to 

the playing techniques [2]. In the field of speech 

recognition, the mel-frequency cepstral coefficients 

(MFCCs) have been widely used to model important 

characteristics in speech [3]. Since modelling speech 

characteristics and timbre are similar, the use of MFCCs has 

been extended with success in the field of music similarity 

[4]. In this paper, we propose to enhance MFCCs’ 

performance in audio similarity tasks by using its time 

derivatives (e.g. delta and acceleration coefficients).  

The paper is organized as follows. The following 

section presents some related works. Section 3 details how 

the MFCCs, delta and acceleration coefficients are 

computed and modelled. In section 4, we describe how the 

derived features are combined and used for audio music 

similarity estimation. The performance is evaluated with 

varied parameters and the results are explained in Section 5. 

Finally, we summarize our findings in Section 6. 

 

2.  RELATED WORK 

 

One of the standard approaches to compute music 

similarity is to estimate a single multivariate Gaussian 

model on the MFCC vectors.   In this way, the closed form 

solutions of the Kullback-Leibler (KL) divergence can be 

used to compute the similarity between two music models. 

Besides being fast, this method has been proven to 

outperform other more complex music similarity approaches 

[5]. Our approach considers the time derivatives of the 

MFCC vectors to enhance music similarity estimation 

performance. The time derivatives add dynamic information 

to the static cepstral features [6]. In other studies, the delta 

and acceleration coefficients were appended to the static 

cepstral features resulting in a three-fold increase in 

dimension (e.g. [19MFCC:19∆:19∆∆]) [7]. These set of 

features can be used for genre classifiers. However, this 

would be impractical for quantifying music similarity 

estimation since the KL divergence involves numerically 

sensitive operations and computationally intensive matrix 

inversion.  Our novel approach simplifies the problem by 

creating separate models for the time derivatives. Similar to 

the standard approach to MFCCs, the time derivative 

vectors are summarized with a single multivariate Gaussian 

model. The same distance computation is performed for the 

resulting Gaussian models. The results are then combined 

with the original MFCC distances. 
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3.  MODELLING TIMBRE 

 

This section details the computation of MFCCs and its time 

derivatives to model timbre.  

 

3.1.  Mel-frequency cepstral coefficients 

 

The timbre component is represented by the MFCCs [3]. 

The normalized audio signals signal is divided into frames 

with a window size and hop size of 512 samples (~23 

msec.). The length of the segment ensures that the 

segmented signal is pseudo-stationary while the hop size 

keeps the continuity of the segments. Next, a window 

function (e.g. Hanning window) is applied to each segment. 

This is necessary to reduce spectral leakage. The following 

steps are then performed to each segment: 

 

1. Calculate the power spectrum using FFT. 

2. Transform the power spectrum to Mel-scale using a 

filter bank consisting of triangular filters. 

3. Get the sum of the frequency contents of each band. 

4. Take the logarithm of each sum. 

5. Compute the discrete cosine transform (DCT) of the 

logarithms. 

 

3.2.  Delta and acceleration coefficients 

 

The performance of a speech recognition system can be 

greatly enhanced by adding time derivatives to the basic 

static parameters [8]. Delta Coefficients are computed using 

the following formula: 
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where dt is a delta coefficient at time t, c is the cepstral 

coefficient, computed using a time window Θ. The same 

equation can be applied to the delta coefficients to obtain the 

acceleration coefficients. Figure 1 visualizes the derived 

features for an audio clip. 

 

3.3.  Summarizing audio features 

 

The features derived from each audio track must be 

summarized efficiently and take into consideration the 

similarity computation method that will be performed. In 

this work, the Mel-frequency cepstral coefficients are 

computed for each time segment or frame. These features 

are aggregated using the bag-of-frames approach to model 

global statistics. The bag-of-frames approach is more 

appropriate in this case since the tasks that will be 

performed are less selective, e.g. music similarity 

estimation. Previous works model the spectral information 

with a single Gaussian distribution with a diagonal 

covariance matrix [9]. Other studies used Gaussian Mixture

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. MFCCs, delta and acceleration coefficients for a 5-

second audio clip. 

 

Models to model the distributions using the K-means 

algorithm and expectation-maximization algorithm [10], 

[11]. Subsequent works have shown that the same level of 

performance can be achieved using single Gaussian 

distribution with full covariance matrix [5], [12]. In this 

paper, the single Gaussian with full covariance approach is 

implemented to benefit from reduced computational 

complexity compared to the Gaussian Mixture Models. We 

extend this approach to delta and acceleration coefficients. 

Thus, each audio file is represented by three single 

multivariate Gaussian models; for MFCCs, delta and 

acceleration coefficients. 

 

4.  APPLICATION TO AUDIO MUSIC SIMILARITY 

ESTIMATION 

 

In this section, we present a music similarity estimation 

method using the derived features. Each audio file is 

represented by three single multivariate Gaussian models. A 

single multivariate Gaussian probability density function is 

defined as: 
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where x is the observation (n-dimensional feature vector), µ 

is the mean, Σ is an n x n covariance matrix. Using a single 

Gaussian with full covariance matrix to model a music file, 

the similarity between two tracks can be computed using the 

Kullback-Leibler (KL) divergence. The KL divergence 

between two single Gaussians p(x)=N(x;µp,Σp) and 

q(x)=N(x;µq,Σq) is given by [13]: 
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Fig. 2. Block diagram of our proposed music similarity 

estimation system. 
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where |Σ| denotes the determinant of the matrix |Σ|, Tr( )
 

denotes the trace function of a matrix.  

A common approach to compute acoustic timbre 

similarity is to use the symmetric version of the Kullback-

Leibler Divergence (SKLD), defined between two single 

Gaussian distributions x1~N(µ1,Σ1) and x2~N(µ2,Σ2): 
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The main drawback of using these models is the fact that the 

SKLD does not hold the triangle inequality and 

consequently, is not a metric. It was shown that the 

transformation function T:SKLD→{log(1+SKLD)}
1/2

 turns 

the symmetric Kullback-Leibler divergence into an exact 

metric when the statistical models compared are Gaussian 

[14].  

 To quantify music similarity based on the presented 

features, we compute pair wise similarities using the 

transformed symmetric KL divergence. This step produces 

three distance matrices. For each distance matrix, we apply 

distance space normalization [15]. Finally, the distance 

matrices are linearly combined into a full distance matrix. 

The weights of the linear combination must be optimized for 

the proposed system. For a given feature set, the weights are 

in the range of 0 to 1 with a step size of 0.1. The sum of the 

weights is 1. An intuitive approach is used instead of 

performing exhaustive comparisons by computing all 

possible permutations.  

TABLE I 

GENRE DISTRIBUTION OF TRACKS FOR THE ISMIR 2004 AND GTZAN 

DATASETS 

 

ISMIR 2004 

Training Set 

Songs 729 

Genres classical (320), electronic (115), jazz_blues (26), 

metal_punk (45), rock_pop (101), world (122) 

Full Set (Training & Development) 

Songs 1458 

Genres classical (640), electronic (229), jazz_blues (52), 

metal_punk (90), rock_pop (203), world (244) 

GTZAN 

Songs 1000 

Genres country (100), rock (100), reggae (100), blues 

(100), disco (100), hiphop (100), jazz (100), pop 

(100), classical (100), metal (100) 

 

5.  EXPERIMENTS 

 

5.1.  Setup 

 

Two datasets were used in our experiments.  The first 

dataset is the training and development sets for the ISMIR 

2004 genre classification contest [16]. Both the training and 

testing set are composed of tracks from six genres. The 

second dataset is the  GTZAN genre collection [17]. The 

dataset consists of 1000 audio each 30 seconds long. It 

contains 10 genres, each represented by 100 tracks.   

For each track, a 30-second clip was selected from the 

middle. For files that are less than 30 sec. long, the actual 

length was used. Each signal was normalized then divided 

into short overlapping segments (e.g. 23ms). The MFCCs 

were derived using 36 filter banks on Hanning-windowed 

segments. Twenty cepstral coefficients were obtained but 

only the last 19 were used. The delta and acceleration 

coefficients were then derived using Equation 1.  

Objective statistics were derived from the full distance 

matrix. In music information retrieval, music similarity is 

taken in the context of genre, artist or album similarity. For 

our tests, the metric we used was the percentage of genre 

matches in the top 5, 10, 15 and 20 query (precision at R = 

5, 10, 15, 20).  
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Artist filtering was applied for the ISMIR 2004 

training set for comparison. This means that there is only 

one track per artist in the artist filtered dataset. The 

experiments were performed using different time windows 

for the delta coefficients, and weights for the individual 

distance matrices. Finally, we evaluated genre classification 

accuracy for the two datasets to compare the performance of 

combining MFCC with its time derivatives. 
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5.2.  Results 

 

In Table II, we tabulate the precision after returning R items 

using the optimum weights. Note that these precisions are 

presented as the average across all the genres for the 

particular dataset. Moreover, only the best combinations are 

presented. Based on the results, there is a significant 

improvement in the precision in using MFCC in conjunction 

with the delta coefficients than using MFCC alone. This 

proves the importance of time derivatives as the static 

MFCCs alone don’t have temporal information. On the 

average, the best precisions were obtained when the delta 

coefficients were given more weight than MFCC (w1=0.4, 

w2=0.6). However, this does not imply that delta coefficients 

could replace MFCCs to model timbre. For example, using 

delta coefficients alone on GTZAN dataset we obtained 5-

precision of 0.7308; while for MFCC alone, 0.7448.  

There were no significant improvements or 

degradation in the precisions using three features 

(0.9MFCC*+0.1∆∆MFCC) as compared to using only two 

(MFCC*≅0.4MFCC+0.6∆MFCC). This means that the 

acceleration coefficients can be disregarded in modeling 

timbre. Thus, the experiments showed that a good model for 

timbre involves the MFCCs and its delta coefficients. The 

experiments also determined if the window size used to 

compute the time derivatives can affect the system’s 

performance. Table II shows inconsistency in the results. 

However in most cases, using Θ=3 frames is better than 

Θ=5 frames. 

Using the ISMIR 2004 dataset, we compared the 

precision with and without artist filtering. With artist 

filtering, the number of returned items was limited to 5 since 

there are only 5 tracks in the jazz_blues genre. Without artist 

filtering, the precision is around 0.73; as compared to with 

artist filtering that resulted to around 0.55. There is a 

difference in the performance of around 0.20 which is 

already consistent with other studies that used the same 

dataset [18].  

Our final experiments used k-nearest neighbors to 

perform genre classification. This method, while being 

simple, is already established for performing music 

similarity measures [19][15].  We want to determine the 

improvement in the classification accuracy using our 

proposed timbre model. Figure 3 shows that the 

combination of MFCC and its time derivatives consistently 

perform better than MFCC alone. For the ISMIR 2004 and 

GTZAN datasets, the best accuracies at k=1 are 0.811 and 

0.816 respectively (0.4MFCC+0.6∆MFCC). As previously 

observed, there is no significant difference in the accuracies 

using three features. Using only these simple features that 

model timbre, it is worthy to note that the performance of 

the system is not far from the state-of-the-art. Thus, the new 

timbre model can serve as a foundation that can be enhanced 

by other features (e.g. fluctuation patterns [20], onset 

patterns [19], tempo [21]). 

 

TABLE II 

R-PRECISION USING MFCC, DELTA AND ACCELERATION COEFFICIENTS 
Collection Features Artist 

Filter 

Returned Items, R 

5 10 15 20 
ISMIR2004 

Train, Θ=3) 

MFCC no 0.7006 0.6088 0.5538 0.5175 

0.4MFCC+0.6∆MFCC no 0.7296 0.6414 0.5776 0.5411 

0.9MFCC*+0.1∆∆MFCC no 0.7309 0.6373 0.5769 0.5418 

MFCC yes 0.5466 na na na 

0.4MFCC+0.6∆MFCC yes 0.5509 na na na 

0.9MFCC*+0.1∆∆MFCC yes 0.5375 na na na 

ISMIR2004  

Train, Θ=5) 
0.4MFCC+0.6∆MFCC no 0.7323 0.6414 0.5741 0.5347 

0.9MFCC*+0.1∆∆MFCC no 0.7403 0.6377 0.5742 0.5317 

0.4MFCC+0.6∆MFCC yes 0.5543 na na na 

0.9MFCC*+0.1∆∆MFCC yes 0.5507 na na na 

ISMIR2004  

Full, (Θ=3) 

MFCC no 0.7633 0.6857 0.6450 0.6138 

0.4MFCC+0.6∆MFCC no 0.7939 0.7178 0.6780 0.6463 

0.9MFCC*+0.1∆∆MFCC no 0.7923 0.7187 0.6778 0.6449 

ISMIR2004  

Full, (Θ=5) 

0.4MFCC+0.6∆MFCC no 0.7990 0.7258 0.6797 0.6462 

0.9MFCC*+0.1∆∆MFCC no 0.7985 0.7246 0.6797 0.6459 

GTZAN 

(Θ=3) 

MFCC no 0.7448 0.6455 0.5871 0.5454 

0.4MFCC+0.6∆MFCC no 0.7932 0.7034 0.6495 0.6101 

0.9MFCC*+0.1∆∆MFCC no 0.7930 0.7066 0.6519 0.6111 

GTZAN 

(Θ=5) 

0.4MFCC+0.6∆MFCC no 0.7852 0.6984 0.6432 0.6021 

0.9MFCC*+0.1∆∆MFCC no 0.7866 0.6958 0.6409 0.6034 

 

In terms of computational complexity, there is not 

much overhead added in computing the symmetric 

Kullback-Leibler divergence twice (e.g. MFCC and delta 

coefficients). The system works on stored matrices such as 

the covariance and inverse covariance matrices. 

The results show that using timbre models is important 

for content-based music similarity estimation. Timbre may 

contain salient information that roughly describes music 

genre. Research had shown that humans have the ability to 

distinguish and classify music after listening to short clips of 

audio. This implies the viability of using timbre as this 

feature can be easily extracted from short clips. The major 

limitation is that humans do not compute a weighted sum of 

similarities with respect to different aspects of music. In 

fact, the concept of audio similarity is subjective to listeners 

and a single aspect which is similar can be considered to 

judge similarity. Nevertheless, the computational model 

presented in this paper hopes to contribute on the 

improvement of content-based systems.  
 

6.  CONCLUSION 

 

We have investigated a method for enhancing MFCC 

features for music similarity estimation using its time 

derivatives. Our novel approach applies the standard single 

multivariate Gaussian with full covariance matrix to model 

MFCCs’ delta and acceleration coefficients. Using the 

Kullback-Leibler divergence to calculate music similarity, 

experiments have shown a consistent improvement in the 

performance in using the delta coefficients in conjunction 

with the MFCCs. Performing genre classification using k-

NN showed that the accuracies obtained are already close to 

the state-of-the-art. In addition, recent studies have proved 

that our approach has a potential to be applied on larger 

databases [14][22].  

We will further investigate our method and determine 

how other low-level features can be used to improve these 

initial results. We will also explore alternative ways of 

integrating these low-level features with our timbre model.  

2008



 
 

 
 

Fig. 3. Genre classification accuracy for ISMIR 2004 (top) 

and GTZAN (bottom) datasets. 
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