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ABSTRACT

In this paper we propose a method for the estimation of the

propagation speed of sound waves from Time Of Arrivals

(TOAs) observed at a sensor array. In our previous work we

presented a speed estimation method based on Time Differ-

ences of Arrival (TDOAs), here we show that the same ap-

proach may be applied successfully to the TOA-based prob-

lem. The exploitation of TOA measurements is driven by ap-

plications where synchronization between source and receiver

is available. The proposed method provides an estimate of

the average propagation speed of the wave along the source-

receiver paths. Such a speed estimate is evaluated and com-

pared with the TDOA-based estimate by means of Cramer-

Rao Bound analysis and simulations.

Index Terms— Propagation speed, speed of sound, time

of arrival, TOA, source localization

1. INTRODUCTION

The estimation of the propagation speed of a traveling wave

is a problem of general interest in several research fields.

Knowledge of the actual propagation speed not only may

improve the accuracy of localization systems, e.g. in acoustic

navigation [1], but also reveals important properties of the

propagation medium, e.g. in seismic exploration [2].

In [3] we exploited the speed of sound estimation to in-

fer the air temperature from Time Differences Of Arrivals

(TDOAs) produced by an unknown acoustic source at a mi-

crophone array. However in many application scenarios,

e.g. microphone array calibration [4] or loudspeaker lo-

calization [5], synchronization between source and receiver

is available and the wave form of the source signal is also

known. Thus also the absolute Time Of Arrivals (TOAs)

observed at spatially distributed receivers can be exploited

for the estimation. For example in [5] TDOA and TOA

measurements are combined to achieve better loudspeaker
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localization accuracy, as they carry slightly different infor-

mation about the source location. For this reason the authors

deemed meaningful to assess the problem of estimating the

propagation speed also from TOA measurements.

To this end, this paper reconsiders TOA-based source lo-

calization and shows how to use it as an intermediate step

to obtain an estimate of the actual propagation speed from

TOAs. Indeed accurate propagation speed estimates may also

improve localization results when undesired temperature vari-

ations occur [6]. In fact the proposed method allows to track

the resulting changes of the speed of sound without relying on

local temperature measurements by means of dedicated sen-

sors. Rather, it is based merely on acoustic measurements

and provides an estimate of the average propagation speed

of the wave along the whole source-receiver path. The pa-

per is structured as follows; Section 2 reviews some standard

TOA-based localization techniques since they serve as basis

for the speed estimation described in Section 3. Section 4

presents the Cramer-Rao-Bound analysis of the TOA-based

estimation. Section 5 includes simulation results which com-

pare TOA- and TDOA-based estimations. Finally Section 6

draws the conclusions of this work.

2. SOURCE LOCALIZATION METHODS

In this section some standard localization techniques are re-

viewed. This is a necessary step to derive the estimate of the

propagation speed. In contrast to our previous publications

we assume here that synchronization between the unknown

located source and the receivers is available. Therefore source

localization is performed by exploiting the Time Of Arrivals

(TOAs) from the source to different receivers.

2.1. TOA-Based Source Localization Problem

Consider the Euclidean space of D = 2 dimensions as de-

picted in Fig. 1 (the case D = 3 follows straightforwardly).

The source to be localized lies in an unknown position x =
[x y]T whereas the M sensors of the array are at the known

positions ai = [xi yi]
T with i = 1, · · · ,M . Let ti indicate

the Time Of Arrival (TOA) between the source x and the ref-

erence sensor ai. Then the TOA-based localization problem
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is to find x given the sensor positions ai and the TOA set

t = [t1 · · · tM ]T.

Typically the propagation speed c is assumed to be a

known constant (though it might be unknown or known with

large uncertainty), this allows to convert TOAs into source’s

ranges ri = cti. From geometrical reasoning it can be stated

ri = cti = ‖x− ai‖ , i = 1, · · · ,M , (1)

where ‖ · ‖ denotes the Euclidean vector norm. The unknown

source position x must fulfill the above N equations.

x

a1 ai aM

r1

ri

y

x

Fig. 1. Geometry of the source localization problem using a

sensor array and TOA-measurements.

2.2. Least-Squares Solution

In what follows we use the approach called Squared Range

Least Squares (SR-LS) [7]. First we take the square of Eq. (1),

then after some calculations we obtain

aT

i x−
‖x‖2

2
=

‖ai‖
2 − (cti)

2

2
, i = 1, · · · ,M . (2)

The above equation is quite similar to the one of the TDOA-

based problem also known as Squared Range-Difference

Least Squares (SRD-LS) [7]. Thus also the TOA-based prob-

lem can be addressed in much the same way. A change of

variable, i.e.

α = ‖x‖2 , (3)

allows an Unconstrained Least Squares (ULS) solution of the

TOA-based problem by means of LS solution of the following

linear system

Φy = b , (4)

where

y =

[

x

α

]

, Φ =
[

A v
]

=







aT
1 − 1

2

...
...

aT

M
− 1

2






, (5)

b =







b1
...

bM






, bi =

1

2

(

‖ai‖
2 − (cti)

2
)

. (6)

As long as M ≥ D + 1 the LS solution of the above system

is given in terms of the pseudo-inverse Φ†

ŷ =

[

x̂

α̂

]

= Φ
†b = (ΦT

Φ)−1
Φ

Tb . (7)

Usually the first vector x̂ comprised of the first D elements

of ŷ is the unconstrained estimate of source position. The

scalar estimate α̂ is considered a by-product of the estima-

tion, though it is actually an independent LS estimate of the

squared range ‖x‖2.

3. PROPAGATION SPEED ESTIMATION

The above mentioned localization methods assume that the

average propagation speed of the wave along the source-

receiver paths is the same and is exactly known. Thus only

the TOA-measurement noise impairs the localization and it is

typically modelled as a zero mean, Gaussian random process

as explained in Section 4. Under this assumption the resid-

ual function of the LS minimization compensates for such a

random noise.

However in many practical cases the assumed propagation

speed c has a variable degree of uncertainty depending on the

specific application scenario. We may reasonably write the

assumed speed as c = c◦+∆c where ∆c represents the devi-

ation from the true average speed c◦. Concerning the localiza-

tion, this means that the ranges ri = cti = (c◦+∆c)ti are all

affected by the same deterministic scaling error that has to be

taken into account. The propagation speed estimation method

described in the following provides an estimate of the devi-

ation ∆c and thus an estimate of the true propagation speed

c◦ = c−∆c.

3.1. TOA-Based Speed Estimation

The basic idea of the proposed speed estimation method is

the same used in [8] to address the TDOA-based problem: a

scalar value ĉ is determined which best fits the model given

the observed TOAs.

As usual we express the ULS solution (7) separately for

x̂ and α̂, respectively, and dependent on the assumed propa-

gation speed c,

x̂(c) = Γb(c) , α̂(c) = θb(c) (8)

where

Γ = (P⊥
v A)† , θ = (P⊥

Av)† (9)

are a known matrix and a known vector, respectively. They

follow from the orthogonal projectors

P⊥
A = I −A(ATA)−1AT , P⊥

v = I−
1

‖v‖2
vvT . (10)

The scalar error function δ(c) follows by using (8) and (3)

δ(c) = ‖x̂(c)‖ −
√

α̂(c) = ‖Γb(c)‖ −
√

θb(c) . (11)
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The above function represents, dependent on the assumed

speed c, the error between the source’s ranges obtained from

the two ULS estimates x̂(c) and α̂(c), respectively. The speed

estimate has to be a zero of δ(c), as it provides compatible

estimates x̂(c) and α̂(c). Given a reasonable guess c̄ for the

propagation speed, the first order Taylor expansion

δ(c) ≈ δlin(c) = δ̄ + δ̄′(c− c̄) , (12)

with

δ̄ = δ(c̄) and δ̄′ =
dδ(c)

dc

∣

∣

∣

∣

c=c̄

(13)

strongly simplifies the problem. For instance in acoustic ap-

plications a good initial value is c̄ = 343.4 m/s which is the

speed of sound in dry air at 20 ◦C. The propagation speed

estimate ĉ is obtained from the zero-crossing of the linearized

function δlin(c) as

ĉ = c̄−∆ĉ with ∆ĉ =
δ̄

δ̄′
. (14)

The value of the first order derivative at c̄ can be calculated

with derivation rules from (11)

δ̄′ =
x̂(c̄)T

‖x̂(c̄)‖
Γb̄′ −

1

2

θb̄′
√

α̂(c̄)
, (15)

where x̂(c̄) and α̂(c̄) are unconstrained estimates given the

speed guess c̄ while the vector b̄′ contains the derivatives

of (6) evaluated at c = c̄.

3.2. Multiple Observation Approach

In this section we show how to exploit multiple TOA obser-

vations for estimating the propagation speed. This approach

applies whenever the average propagation speed can be con-

sidered constant independently of time or source position.

This is true for instance for consecutive TOA observations

of the same acoustic source as long as they are made in a

short time interval with no significant temperature variations.

Another example are experiments in small spaces with homo-

geneous temperature distribution, then TOA observations of

differently positioned sources still carry the same speed in-

formation. Following this idea the scalar function in (11) is

built using TOA measurements of N different sources, xn

with n = 1, 2, · · · , N (actually the index n could represent

the same source but at different measurement times). In noisy

conditions a speed estimate can be found from the minimiza-

tion in the least-squares sense of the obtained functions δn(c).
The corresponding cost function is given by

N
∑

n=1

δ2
n
(c) =

N
∑

n=1

(

‖Γbn(c)‖ −
√

θbn(c)
)2

, (16)

where the index n indicates that the vectors bn(c) from (6)

are obtained using the TOA-observations corresponding to

the source xn. Again the linear approximation in (12) can

be applied to perform the minimization efficiently.

3.3. Comparison with TDOA-based Estimation

Table 1 represents similarities and differences between the

quantities involved in the TOA- and TDOA-based LS estima-

tion. For the latter case an extra sensor a0 is assumed to be

positioned at the origin of the reference system to obtain M
measurements relative to that extra sensor (spherical TDOA

set). As already noted in [7] we see that the TOA-based prob-

lem presents a quadratic constraint while the TDOA-based a

linear one. In addition the system matrix of the TOA-based

problem does not contain measured data, rather it is formed

by the sensor positions and the constant vector v. As a con-

sequence, the matrix Γ and the vector θ are free of measure-

ments noise.

4. CRAMER-RAO BOUND ANALYSIS

To assess the statistical performance of the proposed estima-

tion method we consider the Cramer-Rao Bound (CRB). The

CRB is a lower bound on the variance of any unbiased estima-

tor, we already used it as a benchmark for the TDOA-based

propagation speed estimation [3]. The derivation here will be

sketchy, more details on the CRB can be found in [9].

The following error model for the measured TOA vector

is used

t = t◦ + ǫ =
1

c
r◦(x) + ǫ , (17)

where t◦ is the vector of ideal TOAs, r◦(x) the vector of ex-

act ranges derived from geometry and ǫ a random vector with

covariance matrix Σ = σ2
I independent of x and c. The vec-

tor t carries information about the unknowns of the problem,

i.e. the position of the source x and the propagation speed c.
Such an information, degraded by the noise vector ǫ is quan-

tified by the Fisher’s Information Matrix (FIM). The inverse

of the FIM gives the CRB on the variance of any unbiased es-

timator. For the TOA-based localization and speed estimation

problem the following matrix can be derived

F−1 = (σ c)2
([

UTU −UTt◦

−t◦TU ‖t◦‖2

])−1

, (18)

where U is a matrix whose rows are the unit vectors ui =
(x−ai)/‖x−ai‖, i = 0, · · · , N pointing from the sensors

to the source.

4.1. CRB on Propagation Speed Estimation

The (D+1)-th diagonal element of F−1 is a theoretical vari-

ance bound on the estimation of the propagation speed, e.g.

for the two-dimensional case D = 2

σ2

c
≥ [F−1]33 = (σ c)2‖P⊥

U t◦‖−2 (19)

with the orthogonal projection matrix P⊥
U

.
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TOA-Based TDOA-Based (spherical set)

Measurements ti i = 1, · · · ,M τi,0 i = 1, · · · ,M

Basic Equation a
T

i
x−

‖x‖2

2
= bi a

T

i
x+ cτi,0‖x‖ = bi

System Matrix Φ =









a
T

1
− 1

2

.

.

.
.
.
.

a
T

M
− 1

2









Φ =







a
T

1
−cτ1,0

.

.

.
.
.
.

a
T

M
−cτM,0







Unknowns y =
[

x α
]

T
y =

[

x r
]

T

Known Term bi =
1

2

(

‖ai‖2 − (cti)2
)

bi =
1

2

(

‖ai‖2 − (cτi,0)2
)

Constraint α = ‖x‖2 r = ‖x‖

Error Function δ(c) = ‖x̂(c)‖ −
√

α̂(c) δ(c) = ‖x̂(c)‖ − r̂(c)

Table 1. Comparison between TOA- and TDOA-based estimation. The TOA relations are taken from (1)-(11), the correspond-

ing TDOA relations can be found in [8, 3].

4.2. CRB with Multiple Observations

Here we show how to extend the CRB to take multiple TOA

observations into account. The extension is quite straightfor-

ward, we consider the error model in (17) but with the fol-

lowing modification: the vector t is now obtained by stacking

TOAs corresponding to N different sources x1, · · · ,xN ,

t =
[

tT1 · · · tT
N

]T
=

1

c
r◦(x1, · · · , xN ) + ǫ , (20)

where ǫ is an (M · N)-vector. As a consequence the range

vector becomes

r◦(x1, · · · ,xN) =
[

r◦T
1

r◦T
2

· · · r◦T
N

]T
, (21)

with r◦
n =











‖xn − a1‖
‖xn − a2‖

...

‖xn − aM‖











and n = 1, · · · , N . (22)

The above vector leads to a new matrix

Umulti =
[

UT
1

UT
2

· · · UT

N

]T
, (23)

where the rows of the submatrices Un are unit vectors point-

ing from the array sensors to the source xn. The CRB for

multiple TOA observations is given by using (23) and (20)

in (18).

5. SIMULATION RESULTS

The theoretical bounds derived in the previous section will

be used to evaluate the performance of the proposed method.

The simulations consider a two-dimensional scenario and an

emitting source positioned sequentially at 48 different bear-

ing angles around the sensor array. The source range is fixed

to 1.5 m from the array center as the considered methods

are thought for the near-field case (spherical wave propaga-

tion), anyway the TOA-based estimate is independent of the

source distance under the assumptions of Section 4. For each

source’s bearing angle bias and variance of the estimation are

obtained over 1000 Monte Carlo trials. To demonstrate that

the bias of the proposed method is substantially independent

of the array geometry, a random sensor distribution has been

used, i.e. the coordinates of M = 8 sensors that are not posi-

tioned at the origin were randomly generated from a uniform

distribution over a square with side length of 70 cm. The stan-

dard deviation of the error corrupting the simulated TOAs is

set to be σ = 10 µs as in [3, 9], which corresponds to an error

of about one sample at 96 kHz.

Figure 2 shows the results of the TOA-based speed esti-

mation against the source’s bearing angle together with the

CRB from (19) and the CRB of the TDOA-based estima-

tion [3]. First we emphasize that, given the SNR, the vari-

ance of TOA and TDOA measurements it is not likely to be

the same as they rely on different estimation techniques. Nev-

ertheless, we used the same value of standard deviation σ to

make the two approaches comparable at least from a theoret-

ical point of view. In practical cases a relation between TOA

and TDOA variances may be derived statistically from mea-

sured data as shown in [5]. From the figure we see that the

proposed method performs well: its bias is always less than

0, 5 m/s and its variance is close to the corresponding CRB.

However, it turns out that the two CRBs are quite close to each

other, this means that TOA and TDOA measurements carry

virtually the same information about the propagation speed.

In contrast it can be shown that the CRB of the position es-

timation decreases dramatically when using TOAs instead of

TDOAs (these numerical results are not reported since they

are beyond the scope of this paper). In both cases an accurate

estimation of the speed of sound turns out to be an hard task;

a small standard deviation σ = 10 µs in the measurements

yields a relatively high CRB on the speed estimation (around

4− 6 m2/s2 in this case).

Under these conditions the use of the TOAs instead of

TDOAs does not yield a significant improvement of the esti-

mation accuracy. However the proposed speed estimate ben-
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Fig. 2. Bias and variance of the TOA-based propagation

speed estimation against the source’s bearing angle (random

sensor array and measurement standard deviation σ = 10 µs).

efits from a TOA-approach in terms of robustness, as visible

in Fig. 3 the TOA-based estimate tolerates a higher level of

TOA estimation error. The figure shows bias and variance of

the estimation dependent on the measurement variance and

given a single source positioned at 0◦; the estimate based on

TOAs is optimal up to σ = 100 µs whereas the TDOA-based

estimate [3, 8] is optimal up to σ = 40 µs. The figure also

shows the estimation results and the CRB for multiple obser-

vations (in this case 5 observations of the same source); it is

clear that a multiple observation approach lowers the estima-

tion variance and so the estimation accuracy improves.

6. CONCLUSION

A method for estimating the propagation speed from TOAs

observed at a sensor array is presented. The estimate of the

propagation speed is obtained with the same approach that

we used to address the TDOA-case. The statistical proper-

ties of such a speed estimate are evaluated by means of sim-

ulations and compared with the TDOA-case. The proposed

TOA-based estimate provides substantially bias-free results

independent of the source position and attains the CRB. Given

the same measurement variance, the accuracy of the speed es-

timate does not improve significantly by using TOAs instead

of TDOAs. However the TOA-based estimate gives better

results in terms of robustness and its accuracy can be still im-

proved by using a multiple observation approach. Thus it is

recommended when source-receiver synchronization is avail-

able. Currently the authors are working on further compar-

isons by means of experimental measurements.
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Fig. 3. Bias and root mean square error (RMSE) of the speed

estimation for different values of the standard deviation σ.
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