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ABSTRACT

Learning an appropriate distance metric is a critical problem
in pattern recognition. This paper addresses the problem in
semi-supervised metric learning and proposes a new regular-
ized semi-supervised metric learning (RSSML) method using
local topology and triplet constraint. Our regularizer is de-
signed and developed based on local topology, which is rep-
resented by local neighbors from the local smoothness, cluster
(region density) and manifold information point of view. The
regularizer is then combined with the large margin hinge loss
on triplet constraint. We have implemented experiments on
classification using UCI data set and KTH human action data
set to evaluate the proposed method. Experimental results
show that the proposed method outperforms state-of-the-art
semi-supervised distance metric learning algorithms.

Index Terms— semi-supervised metric learning, mani-
fold, density, cluster

1. INTRODUCTION

Distance metric learning is categorized into two paradigms:
unsupervised and supervised. Unsupervised method tries to
find a low-dimensional manifold by preserving local topol-
ogy. The common linear methods include PCA [1] and MDS
[2] while nonlinear methods include LLE [3], Isomap [4]. Su-
pervised method uses label information to learn a distance
function. With the function, the distance between samples of
the same class is less than that between samples from differ-
ent classes. Some popular techniques include Fisher Linear
Discriminant Analysis [5], Neighborhood Component Anal-
ysis [6], metric learning for Large Margin Nearest Neighbor
Classification (LMNN) [7] and so on.

In the literature, learning distance metric using ”side-
information” [8] [9] [7] attracts much attention. The side
information is, normally, presented in pairwise constraint
which indicates whether two given samples are in the same
class (positive constraint) or not (negative constraint) in a
particular learning task. Triplet constraint is an extension of
pairwise constraint. In triplet constraint (xi, xj , xk), xi, xj
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should be closer than xi, xk. Along this line, methods with
different variations [8] [10] [11] were also proposed.

However, semi-supervised metric learning receives rela-
tively less attention. In [12], two kernel-based metric learn-
ing methods have been presented. They incorporated unla-
beled data by a kernel. But they did not take advantage of
topology structure. Xiang et al [11] introduced the trace ratio
optimization problem as an objective function. Based on the
objective function in [11], Baghshah [13] proposed to learn
the distance by preserving the local relationship similar to
LLE [3]. However, the cluster information is not considered.
In Laplacian Regularized Metric Learning (LRML) [9], they
treated the points nearby (both labeled and unlabeled) as sim-
ilar pairs (positive constraints). But LRML did not consider
cluster (region density) and the manifold information. It has
been shown in [14] [15] [16] that that information plays a
fundamental role in the representation of data structure. To
the best of our knowledge, all semi-supervised learning algo-
rithms are based on the underlying data structure. But none
of them considered all the three semi-supervised assumptions,
i.e., smoothness, cluster (local density) and manifold.

To overcome the limitations in existing semi-supervised
metric learning methods, this paper presents a novel semi-
supervised distance metric learning method by mapping the
input data into a new space where the local topology is
preserved. We propose and develop a Regularized Semi-
Supervised Metric Learning (RSSML) method which not
only satisfies the triplet constraint, but also preserves the
local topology after mapping the data into a new space.

The proposed regularizer is developed according to local
topology, which is designed based on all the three semi-
supervised assumptions. That is, the local topology is rep-
resented by local neighbors from the perspective of local
smoothness, region density and manifold information. A
novel objective function is designed by integrating the mar-
gin hinge loss and the regularizer. Thus, by minimizing our
objective function, the learned optimal metric will satisfy
the followings. (i) A margin between samples from different
classes is preserved; (ii) distance between samples in high
density region is minimized more fiercely than that between
samples in low density region, and (iii) if two samples are
close to each other in input space, they will also be close
under the optimal metric. In short, the contributions of this
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paper are listed as follows.

• Propose a novel local topology representation for semi-
supervised metric learning;

• Develop a regularized semi-supervised metric learning
algorithm;

• Design a new objective function which incorporates the
margin hinge loss on labeled data and regularizer on
whole data set (labeled and unlabeled data).

2. REGULARIZED SEMI-SUPERVISED METRIC
LEARNING

2.1. Problem Setting

Throughout the paper, we denote L = {x1, ..., xl} and U =
{xl+1, ..., xn} as the labeled and unlabeled data set respec-
tively, D = L

∪
U = {x1, ..., xn} is the collection of all

samples, where xi ∈ Rm. X = [x1, x2, ..., xn] is the data
matrix. Let dij be the Euclidean distance and Dij be the
learned distance between xi and xj . For Mahalanobis dis-
tance, Dij is determined by a semi-definite positive matrix A,
D2

ij = (xi − xj)
T A(xi − xj). Y = [yij ]l×l, yij ∈ {0, 1} is

a binary matrix to indicate whether xi xj belong to the same
class or not. If yij = 1, xi xj are from the same class, other-
wise, xi xj are in different classes. S is the similarity matrix.

Label information is casted into the triplet constraints. For
each triplet (xi, xj , xk), xi is the reference sample which is
closer to xj than to xk. Ideally, we hope to learn a distance
matrix [Dij ]

l
i,j=1 satisfying: T = {(xi, xj , xk)|Dij < Dik}.

2.2. Large Margin Metric Learning

Generally, given the triplet constraints T , we attempt to find a
semi-definite positive matrix A that maximizes (D2

ik −D2
ij).

It is equivalent to minimize (D2
ij −D2

ik), that is:

min
∑
T

(D2
ij −D2

ik), s.t. A ≽ 0 (1)

Further more, by scaling A we can ensure Dij + 1 < Dik

Then we can obtain A by the following optimization problem:

min
∑
T

[1 +D2
ij −D2

ik]+, s.t. A ≽ 0 (2)

where [z]+ := max{z, 0}. In this way, the idea of margin
is incorporated. Specifically, for each reference sample xi
in triplet (xi, xj , xk), if Dij is added by one unit of distance
which is still less than Dik, the hinge loss will be incurred.

When dealing with real world applications, it is difficult
to simultaneously satisfy the constraints for all the triplets
(xi, xj , xk). Similar to LMNN [7], for each sample xi, k
”neighbors”—k other samples sharing the same label with

xi— is specified. And only the distance from those k ”neigh-
bors” to xi will be minimized. The k ”neighbors” are deter-
mined by Euclidean distance. With the introduction of neigh-
bor indicator ηij ∈ {0, 1}, ηij = 1 if xi and xj are ”neigh-
bors”, ηij = 0, otherwise. The following optimization is de-
rived for the large margin hinge loss:

min
∑
T

ηij(1− yik)[1 +D2
ij −D2

ik]+, s.t. A ≽ 0 (3)

Although it has been shown in [17] and [7] that the large
margin hinge loss works well, it is sensitive to noise some-
times, and it did not consider the unlabeled data. To cope with
the problems, we introduce a new regularizer and propose a
new regularized semi-supervised metric learning algorithm.

2.3. Regularized Semi-Supervised Metric Learning

There are two popular regularizers for metric learning. The
first one used in [10] prevents the elements in A from being
overlarge. And it is shown in Eq. (4)

rg(A) = ∥A∥2F =
m∑

i,j=1

a2ij (4)

Another regularizer in Laplacian Regularized Metric
Learning (LRML) [9] is:

rg(A) =
1

2

n∑
i,j=1

WijD
2
ij (5)

where Wij = 1, if i ∈ N (j) or j ∈ N (i), Wij = 0, oth-
erwise, and N (i) denotes the nearest neighbor list of xi de-
picted by Euclidean distance. While this is a better regularizer
as it considers the neighbor relation, it does not consider re-
gion density and manifold information, which is proved to be
beneficial for semi-supervised classification.

As discussed, we represent local topology by the relation-
ship between data points and their neighbors in terms of sam-
ple similarity and region density. We construct our regularizer
following two criteria: (i) samples (both labeled and unla-
beled) with high similarity in the input space must have small
distance in the mapped space; and (ii) samples in high density
region must be closer than those in low density region in the
mapped space. In this way, the unlabeled data is incorporated.
With these criteria, our regularizer is defined:

rg(A) =
1

4

n∑
i=1

βi|N (i)|−1
∑

j∈N (i)

SijD
2
ij (6)

Here, |N (i)| is the size of N (i), Sij is the similarity between
xi and xj , and βi = λ[p(xi)] ∈ R+ where p(xi) is the den-
sity of xi, and λ : R → R is a nonnegative monotonically
increasing function.
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By combining the regularizer (Eq. (6)) and the large mar-
gin hinge loss (Eq. (3)), we formulate a new distance metric
technique called Regularized Semi-Supervised Metric Learn-
ing (RSSML) as follows:

min
1

4

n∑
i=1

βi|N (i)|−1
∑

j∈N (i)

SijD
2
ij

+ c
∑
T

ηij(1− yik)[1 +D2
ij −D2

ik]+

(7)

s.t. A ≽ 0

Scalar c is a trade-off parameter between the regularizer and
the margin hinge loss.

2.4. Optimization

To learn a Mahalanobis distance is equivalent to learn a linear
mapping: UT : Rm → Rr where U = [u1, ...,ur] ∈ Rm×r,
for a possible metric A. As a result, the new distance metric
between two samples can be calculated as:

D2
ij = ∥UT (xi− xj)∥2 =

r∑
t=1

uT
t (xi− xj)(xi− xj)T ut (8)

where A = UUT is the optimal metric to be learned.
For a reference sample xi, we introduce a weight matrix

W (i), which is a symmetric matrix with all its elements 0
except for the ith column and the ith row as follows,

W
(i)
ij = W

(i)
ji =

{
βi|N (i)|−1Sij if j ∈ N (i)
0 otherwise

With the weight matrix W (i), we can get,

rg(A) =
1

4

n∑
i=1

βi

|N (i)|
∑

j∈N (i)

SijD
2
ij =

1

2

n∑
i,j,k=1

W
(i)
jk D2

jk

(9)
Further formulate Eq. (9) utilizing Eq. (8):

rg(A) =
1

2

n∑
i=1

n∑
j,k=1

W
(i)
jk D2

jk

= tr(UTXLXTU) = tr(XLXT A)

(10)

where L =
∑n

i=1 L
(i), L(i) is the Laplacian matrix of W (i),

tr represents the trace operator.
Now our optimization problem can be written as follows:

min tr(XLXT A)+c
∑
T

ηij(1−yik)[1+D2
ij−D2

ik]+ (11)

s.t. A ≽ 0

The regularizer is linear in A, and the second part of Eq.(11)
can be ”mimicked” by introducing slack variables ξijk for all
triplet constraints. Write Eq.(11) as a semi-definite program
(SDP). And the outcome is given in Figure 1.

min tr(XLXT A) + c
∑

T ηij(1− yik)ξijk

s.t. (i)(xi − xk)T A(xi − xk)− (xi − xj)T A(xi − xj)
≥ 1− ξijk

(ii) ξijk ≥ 0

(iii) A ≽ 0

Fig. 1. The semi-definite program.

2.5. Remarks

Eq. (7) defines a regularized margin cost function that en-
forces the new metric not only to keep a margin between la-
beled samples from different classes, but also to be consistent
with the local topology in the input space. Our regularized
semi-supervised metric learning (RSSML) is inspired by the
three semi-supervised assumptions in semi-supervised learn-
ing. So RSSML has the following advantages:

First, according to the smoothness assumption, a point xi

should be homogeneous to its neighbors in N (i). So the dis-
tance between xi and its neighbors should not be overlarge.
This is depicted by D2

ij , j ∈ N (i). If those D2
ij , j ∈ N (i)

are large, it is indicated that compatibility between the metric
and the local data is low, and then it will be penalized.

Second, the low density assumption implies that decision
boundary should go through the low density region. That is to
say, samples located in high density region should be closer to
each other. βi in the regularizer ensures that distance between
the close samples in high density region is more likely to be
minimized while large distance between those samples will
be penalized severely. Similarly, distance between samples in
low density region will be less regularized.

Third, according to the manifold assumption, the distance
should be measured along the manifold. That is, the distance
should reflect the manifold structure. Inspired by the success
of graph-based methods in semi-supervised learning, we use
a similarity Sij in the regularizer, which is computed by a
Gaussian Kernel, to guide the new distance. If two samples
are similar to each other in input space, their learned distance
should not be large.

3. EXPERIMENTS

3.1. Experimental settings

We compare the proposed method with four semi-supervised
metric learning methods: LRML [9], Topo-preserved method
[13] and two methods in kernel approach for semi-supervised
metric learning [12], namely Kernel-A and Kernel-β. The
Euclidean distance is used as a benchmark.

In LRML, Topo-preserved, Kernel-A and Kernel-β meth-
ods, the pairwise constraint is used, and triplet constraint is
used in RSSML. Therefore, in the experiments, the labeled
data set L = {x1, ..., xl} with its corresponding label set
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Y = {y1, ..., yl} and unlabeled data set U = {xl+1, ..., xn}
are used for all the methods. Then label information will
be converted to pairwise constraints and triplet constraints.
When converting to pairwise constraints, two same labeled
samples is a positive constraint and two different labeled sam-
ples is negative constraint. When converting to triplet con-
straints for RSSML, a triplet constraint consists of two same
labeled samples and a different labeled sample.

The parameters in those compared methods are set as their
suggestions. The parameters in the proposed method are sum-
marized as follows:

• Parameter c in Eq(11) indicates the ratio between the
regularizer and the margin hinge loss. c is determined
in a way that the ratio is equal to or greater than 2 : 8
on UCI data sets. And the ratio on the KTH data set is
1 : 9.

• The similarity Sij used in experiments is calculated

by a Gaussian Kernel: Sij = exp(− d2
ij

2σ2 ), where
dij is the Euclidean distance between xi and xj ,
σ is set inspired by Kernel-A and Kernel-β: σ2 =
(5/n2)Σn

i,j=1exp(−∥xi − xj∥2).

• For the function λ[x], we adopt λ[x] = x.

• The density p(xi) is estimated by the Parzen Window
method [1].

3.2. Experiments on some UCI data sets

Table 1 summarizes data sets from UCI repository [18] used
in this study.

data set samples attributes classes |L| |U| |L|/|D|

dermatology 358 34 6 30 328 8.38%

wine 178 13 3 15 163 8.43%

balance 625 4 3 15 610 2.4%

soybean 562 35 15 75 487 13.35%

iris 150 4 3 15 135 10%

zoo 101 16 7 35 66 34.65%

Table 1. Description of the UCI data sets

In the experiments, all the data sets are randomly divided
into two subsets: labeled data set L and unlabeled data set
U . We specify 4 ”neighbors” for each sample in L. And
5 labeled samples of each class are selected to train a new
metric and a 1-NN classifier. Every experiment is repeated
10 times with randomly selected training samples. The final
result is computed as an average of 10 runs.

Because of the limited data, the unlabeled data set is also
served as testing data set. The labeled and unlabeled/testing
data set information can be found in Table 1. |L| is the size of

labeled data set and |D| = |L| + |U| is the size of the whole
data set, so |L|/|D| is the labeled sample ratio.

Figure 2 shows the recognition results (error rate) based
on a 1-NN classifier using different distance measures as
stated in Subsection 3.1. It is observed that, first, LRML,
Topo-preserved and RSSML methods improve the recog-
nition result on all the data sets compared with Euclidean
distance except on the iris data set. Second, the Kernel-A and
Kernel-β methods are not stable and perform not so good.
Third, RSSML outperforms the other methods and obtains
the lowest error rate on all the data sets.

Fig. 2. The recognition error rate (%) by the application of a
1-NN classifier with different distance measures.

3.3. Experiments on KTH Human Action data set

There are 6 actions under 4 scenarios in KTH data set [19].
Example images from the videos are show in Figure 3. Fol-
lowing the settings in [20], we take non-overlapped videos
for training (8 persons) and for testing (another 9 persons).
For each action, we use 5 local descriptors for experiments,
namely, 1) intensity, 2) intensity difference, 3) histograms of
optical flow (HoF) without grid, 4) histograms of gradient
(HoG) with 2D grid, 5) HoG with 3D grid. Each descrip-
tor is presented by a vector of 600 dimension. The training
videos of 8 persons generate 191 actions for each descriptor.
The testing videos of another 9 persons generate 216 actions
for each descriptor.

In the experiments, each descriptor is used to train a met-
ric, and then a 1-NN classifier with the learned metric is used
in a recognition task.

Recognition error rate with each descriptor as well as the
average recognition error rate are presented in Table 2. From
Table 2, it can be concluded that, first, Topo-preserved and
RSSML outperform LRML. It indicates that, local topology
helps to improve the metric measure. Second, RSSML per-
forms better than Topo-preserved method. It implies that the
cluster information (region density) is useful in local topology
representation. Third, Kernel-A is more stable than Kernel-
β, and Kernel-A obtains better results. Both kernel methods
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Fig. 3. Examples from videos in KTH , all 6 actions and 4
scenarios are presented.

method 1 2 3 4 5 Ave

Euclidean 32.87 31.48 38.43 50.00 39.35 38.43
LRML 32.41 31.02 37.04 49.54 36.57 37.32

Topo-preserved 23.61 18.52 25.93 38.43 30.56 27.41

Kernel-A 25.93 29.63 33.80 41.67 36.57 33.52
Kernel-β 31.94 33.80 54.63 50.93 45.37 43.33

RSSML (ours) 19.91 18.98 25.93 35.65 29.63 26.02

Table 2. The recognition result (error rate %) by the applica-
tion with a 1-NN classifier on the KTH action set.1-5 are the
corresponding five descriptors mentioned at the beginning of
this subsection. ”Ave” is the short of average.

work better on this data set than on the UCI data sets.

4. CONCLUSION

In this paper, we have proposed a novel regularized semi-
supervised distance metric learning method (RSSML). The
metric is learned by preserving local topology based on the
three fundamental semi-supervised assumptions and triplet
constraints. Experimental results on UCI and KTH data sets
show that local topology is an important criterion when de-
signing semi-supervised metric learning algorithm.
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