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ABSTRACT
Multiscale entropy (MSE) analysis allows quantifying the
complexity of time series over multiple time scales. MSE can
be useful to identify impaired cardiovascular control. There-
fore, to better understand the regulatory mechanisms of the
peripheral cardiovascular system, we have processed digital
blood pressure (BP) and laser Doppler flowmetry (LDF) sig-
nals from finger and forearm with MSE. BP and LDF signals
have been recorded simultaneously on 6 healthy subjects be-
fore and after a vasodilator administration (glycerin trinitrate,
GTN). Our results show that BP and LDF signals do not have
a constant complexity over scales. Moreover, a minimum,
which may reflect the cardiac activity, was identified on MSE
profiles. For BP signals GTN induces changes in the com-
plexity. We also note that, after GTN administration, the
complexity of LDF signals from forearm is increased for the
largest scales studied herein while no changes are observed
for the one of LDF signals from finger.

Index Terms— Multiscale analysis, digital blood pres-
sure, laser Doppler flowmetry, peripheral cardiovascular sys-
tem, glycerin trinitrate

1. INTRODUCTION

Physiological signals are complex and involve regulation pro-
cesses which operate over multiple time scales. These control
mechanisms can be studied by quantifying the signals “com-
plexity” [1, 2].

The multiscale entropy (MSE) analysis allows the eval-
uation of the complexity of time series over multiple time
scales [3, 4]. Several works have shown that MSE can be
useful to identify abnormalities in cardiovascular control [4,
5]. Numerous MSE studies have analyzed heart rate variabil-
ity signals (HRV) issued from the central cardiovascular sys-
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tem (CVS) [4, 5, 6, 7]. They have shown, in particular, that
age and congestive heart failure induce a loss of complexity
in HRV signals [6, 7].

By contrast, only few studies have considered signals is-
sued from the peripheral CVS [8, 9]. From our knowledge,
only digital blood pressure variability (i.e. systolic and di-
astolic blood pressures) and laser Doppler flowmetry (LDF)
signals, which reflect the blood perfusion [10, 11], have been
computed separately with MSE [5, 8, 9, 12]. We herein pro-
pose to process - with MSE - digital blood pressure (BP) and
LDF signals recorded simultaneously. LDF signals have been
acquired on two sites: the finger and the forearm. Finger and
forearm do not present the same microvasculature structure.
Therefore, control mechanisms involved for finger could be
different from the ones of the forearm. To evaluate the periph-
eral CVS, we also propose to observe the possible impact of a
chemical perturbation. For this purpose, a vasodilator (glyc-
erin trinitrate, GTN) which reduces peripheral arterial resis-
tances was administrated [13].

2. MATERIALS AND METHODS

2.1. Measurement procedure

For this study, BP and LDF signals were recorded simulta-
neously on six healthy subjects (30 ± 12 years old; 5 men),
without known disease. All subjects gave their informed and
written consent to participate to the study which was approved
by the local ethic committee of our institution. For the ac-
quisition, the subjects were in supine position. A BMEYE
monitor (Nexfin, model 1, Amsterdam, sampling rate equal
to 200 Hz) and a laser Doppler flowmeter (Periflux PF5000,
Perimed, Sweden - 780 nm laser diode) were used for the ac-
quisition of digital BP (left middle finger) and LDF signals
respectively. Two LDF probes (PF408, Perimed, Stockholm,
Sweden) were positioned on the finger (palm side) and on the

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 1796



forearm (ventral face) of the subjects. BP was assessed in
mmHg and skin blood flow in arbitrary units (a.u.). More-
over, BP and LDF signals were recorded on a computer via
an analog-to-digital converter (Biopac System) with a sam-
pling frequency of 20 Hz for at least 30 min before GTN
administration and 30 min after GTN administration (GTN,
sublingual spray called Natispray, 2 doses of 0.15 mg, Teo-
farma, Italy). BP and LDF data for one subject are shown in
Figure 1. The electrocardiogram (ECG) was also recorded, si-
multaneously to the acquisition of BP and LDF signals, with a
physioflow device (PF-05 lab1, Manatec, France). Heart rate
variability (HRV) signals were then computed from ECG and
the average heart rate was estimated before and after GTN
administration.

Fig. 1. a) LDF signal recorded on the forearm of one sub-
ject. b) digital blood pressure recorded on the same subject.
c) same LDF signal as a) but represented on a longer time
axis. d) same digital blood pressure as b) but represented on
a longer time axis.

2.2. Multiscale entropy

In 1991, Pincus has introduced the approximate entropy (ApEn)
to quantify the regularity of time series (i.e. presence of
similar patterns in the time series) [14]. ApEn algorithms
have largely been used to analyze physiological time se-
ries. However, ApEn requires quite long recording and lacks
consistency. Therefore, Costa et al. have proposed the multi-
scale entropy (MSE) concept which allows analyses of short
and noisy physiological time series [3, 4]. MSE consists in
obtaining the entropy values, which are a measure of un-
certainty, through several scales. For this purpose, given a
time series {x1, ..., xi, ..., xN} of length N , a consecutive
coarse-grained time series y(τ) is constructed:

y
(τ)
j =

1

τ

jτ∑
i=(j−1)τ+1

xi (1)

where τ represents the scale factor and 1 ≤ j ≤ N/τ . The
sample entropy (SampEn) of each coarse-grained is then com-
puted. SampEn(m, r,N) is the negative natural logarithm
of the conditional probability that a dataset of length N , hav-
ing repeated itself within a tolerance r for m points, will
also repeated itself for m + 1 points, without allowing self-
matches:

SampEn(m, r,N) = − ln
Am(r)

Bm(r)
(2)

whereAm(r) is the probability that two sequences will match
for m + 1 points and Bm(r) is the probability that two se-
quences will match for m points. The more regular and pre-
dictable a time series, the lower the value of SampEn. The
more random a time series, the higher the value of SampEn.
To allow comparisons with previous studies [8, 9, 12], MSE
algorithm was implemented with m = 2 and r = 0.15×SD,
where SD is the standard deviation of the original time series.

Our BP and LDF data have been normalized before the
application of MSE (substraction of the mean and division by
the standard deviation). Moreover, our BP and LDF record-
ings having a length of 36 000 samples, they were processed
with a scale factor τ ranging from 1 to 36 in order that the
shortest coarse-grained time series contain 1000 points [15].

2.3. Data analysis

Statistical tests were computed with the TANAGRA soft-
ware [16]. The Wilcoxon signed-rank test was used to com-
pare BP data with LDF data recorded on finger and forearm,
before and after GTN administration. Tests were considered
as significant when p-value was inferior to 0.05.

3. RESULTS

Our results show that MSE profiles for both BP and LDF sig-
nals are nonmonotonic (see Figures 2 and 3 respectively).
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SampEn values increase to reach a maximum, decrease to
reach a local minimum and then increase again.

Before GTN administration, no significant differences be-
tween SampEn values of LDF signals recorded on the fin-
ger and the ones of LDF signals from the forearm are ob-
served (p > 0.05 on all scales).

Fig. 2. Average SampEn of 6 digital blood pressure sig-
nals before GTN administration (circle) and after GTN ad-
ministration (star).The sampling period for these signals is
T = 0.052 s, which gives, for scale factors going from τ = 1
to τ = 36, time scales ranging from τT = 0.05 s to τT = 1.8 s.
Vertical bars represent the standard deviation.

On MSE profiles of BP signals we can identify a local
minimum (see Figure 2). This local minimum SampEn value
is reached for a scale factor τ equal to 20 (scale factor cor-
responding to the minimum SampEn value observed on the
average MSE profile of the 6 subjects). This distinctive scale
is also present on MSE profiles of LDF signals from finger
and forearm: τ = 18 and τ = 19 respectively (see Figure 3).
However, the local minimum is more rounded. After GTN ad-
ministration, SampEn values for BP signals are significantly
increased on scale factors τ from 2 to 4 and decreased on
scales 8, 11 and 19 to 23 (see Figure 2). Moreover, GTN ad-
ministration significantly increased SampEn values for LDF
signals recorded on the forearm on scale factors τ from 12
to 36 (p < 0.05)(see Figure 3b). However, GTN does not
change significantly SampEn values for LDF signals from fin-
ger on all scales (p > 0.05)(see Figure 3a). We also note that
SampEn values for LDF signals from forearm are higher than
the ones of LDF signals from finger on scales from 15 to 36
after GTN admnistration.

4. DISCUSSION

In this study we processed BP and LDF signals issued from
the peripheral CVS. LDF signals have been recorded on dif-
ferent sites: the finger and the forearm. Moreover, to better

a)

b)

Fig. 3. a) Average SampEn of 6 LDF signals recorded on fin-
ger before GTN administration (circle) and after GTN admin-
istration (star). b) Average SampEn of 6 LDF signals recorded
on forearm before GTN administration (circle) and after GTN
administration (star).The sampling period for these signals is
T = 0.05 s, which gives, for scale factors going from τ = 1 to
τ = 36, time scales ranging from τT = 0.05 s to τT = 1.8 s.
Vertical bars represent the standard deviation.

understand the underlying regulatory mechanisms of the pe-
ripheral CVS we have perturbed the CVS with a vasodilator,
GTN. Our results show that MSE profiles of BP and LDF are
nonmonotonic. SampEn values increase to reach a maximum.
Therefore, the processes acting around the time scale corre-
sponding to this maximum SampEn value have the highest
irregularity. Then, SampEn values decrease to reach a local
minimum. The processes acting around the time scale corre-
sponding to this local minimum SampEn value have the low-
est irregularity. The behavior of the MSE of continuous BP
signals is different for the one of blood BP variability shown
in previous studies [5, 12]. In supine position, SampEn values
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of systolic and diastolic blood pressures increase with scales
which is different from the nonmonotonic MSE evolution that
we observe in our study. If we analyze systolic or diastolic
blood pressure we remove the periodicity of the signal due to
the cardiac activity and therefore the local minimum SampEn
value dominated by the heart rate is not present on MSE pro-
files. In a previous study, Humeau et al. [9] have already sug-
gested that the distinctive scale observed on MSE profiles of
LDF signals could be dominated by the cardiac activity. If we
multiply these scale factors by the sampling period T = 0.05 s,
we obtain time periods equal to 0.9 s and 0.95 s which is close
to the cardiac period. Moreover, if we compare this distinctive
scale factor τ with the average heart rate (HR) estimated from
HRV signals recorded during 30 min before GTN administra-
tion, for each subject, we find similar values (see Tables 1
and 2). The small difference observed could rely on the sam-
pling period of BP and LDF signals which is higher than the
one of ECG (0.05 s vs 0.004 s). When we compare, for each
subject, the scale factor τ which corresponds to the average
minimum SampEn value obtained from MSE profiles of LDF
signals from finger and forearm, we find values rather similar
although they are less close than the ones of BP and HR (see
Tables 1 and 2). The local minimum present on MSE profiles
of LDF signals is more rounded than the one present on MSE
profile of BP. Therefore, the identification of the distinctive
scale may be less accurate.
After GTN administration, the heart rate of some subjects has
increased. For these subjects, we observed a shift of the MSE
minimum value toward the left (i.e. toward smaller scale fac-
tors τ which correspond to higher frequencies) on both MSE
profiles of BP and LDF signals. Therefore, this result may
confirm the hypothesis that the distinctive scale correspond-
ing to the local minimum SampEn value is dominated by the
cardiac activity.

As regard the complexity, before GTN administration,
SampEn values of LDF signals from the finger are not sig-
nificantly different from the ones of LDF signals from the
forearm on all scale factors although finger and forearm have
different microvascular structures. However, after GTN ad-
ministration, the complexity of LDF signals from forearm
is increased for scales larger than 12 while no significant
changes are observed for LDF signals from finger on all
scales. Therefore, when CVS is perturbed by GTN, the
processes which regulate the cutaneous blood perfusion in
forearm may become less predictable and less regular on
scale larger than 12. For BP signals, according to our results,
after GTN administration, the irregularity of processes acting
around small scales (2, 3 and 4) may be increased while the
one of processes acting around larger scales (8, 11 and 19
to 23) may be reduced.

Table 1. Comparison between scale factor τ which corre-
sponds to the minimum SampEn value on MSE profiles of
BP signals and the average heart rate (HR) estimated from
HRV signals recorded during 30 min before GTN.

τ which corresponds Average HR (in second)
Subjects to the local minimum estimated from HRV

SampEn value on MSE signals recorded during
profiles of BP signals 30 min before GTN

subject 1 24 = 1.20 s 1.15
subject 2 12 = 0.60 s 0.62
subject 3 19 = 0.95 s 0.95
subject 4 19 = 0.95 s 0.98
subject 5 19 = 0.95 s 0.99
subject 6 15 = 0.75 s 0.74

Table 2. τ which corresponds to the minimum SampEn value
on MSE profiles of LDF signals from finger and forearm (av-
erage τ from finger and forearm)

τ which corresponds
Subjects to the local minimum

SampEn value on MSE
profiles of LDF signals from
finger and forearm (average)

subject 1 20 = 1.0 s
subject 2 12 = 0.60 s
subject 3 17 = 0.85 s
subject 4 19 = 0.95 s
subject 5 17 = 0.85 s
subject 6 14 = 0.70 s

5. CONCLUSION

Our analysis shows that both BP and LDF signals have a non-
monotonic MSE evolution. Moreover, the presence of the car-
diac activity may be identified on MSE profiles of BP and
LDF signals. GTN administration induces changes in con-
trol processes of BP signals and LDF signals recorded on the
forearm. However, GTN has no significant impact on the ir-
regularity of LDF signals from finger. Therefore, GTN impact
may depend on anatomical sites. Further works could now be
conducted on pathological subjects to enhance diagnosis.
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