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ABSTRACT

Passive radars using WiFi base stations as illuminators are a
promising option for local area surveillance. Unfortunately,
the reflections of WiFi signals from a large object can easily
mask any nearby objects making it difficult to detect all tar-
gets within range. Using the fact that most target scenes are
only very sparsely populated makes it possible to apply com-
pressive sensing (CS) for target detection. We analyze how
well WiFi signals fit into the CS framework, propose corre-
sponding detection schemes, and show how detection accu-
racy is increased and receiver complexity is reduced. It turns
out that CS enables the detection of closely spaced targets
with only a small number of recorded WiFi frames.

Index Terms— Localization, passive radar, compressive
sensing, sparse approximation

1. INTRODUCTION

Passive radars offer a low-cost alternative to the commonly
used active systems. The signals of existing radio transmitters
(such as TV stations or mobile communication base stations)
and their reflections on targets are analyzed by a passive radar
receiver to determine the location of the targets. While pas-
sive radars are easy to setup and their presence is difficult to
detect, they have to deal with non-cooperative transmitters,
which puts higher demands on signal processing.

Since WiFi base stations (BS) are becoming ubiquitous
nowadays, exploiting their signals might be interesting for
local area surveillance. The first experiments to detect hu-
mans using WiFi signals were conducted in [1]. The regu-
larly broadcasted beacons, which identify the BS to potential
users, were utilized for localization. By correlating the re-
ceived signal with the transmitted one, the detection of one
person was possible in a wide open field without much clut-
ter. Experiments in high clutter indoor environments with
passive bistatic radars using OFDM-modulated WiFi signals
were conducted in [2], where it was possible to detected one
moving person even trough a wall. Two persons moving in
opposite directions were, however, already difficult to detect.
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Experimental results of a WiFi-based passive radar system
detecting range and speed of a target in a parking lot were
presented in [3]. It was demonstrated that a moving vehicle
can be detected, but a person standing next to it is severely
masked by the strong reflection of the car. Only the joint
application of disturbance removal techniques and ambiguity
function control filters allowed for a detection of the moving
vehicle and the person.

In a typical radar scenario, only a small number of inter-
esting targets are usually present. This sparsity can be ex-
ploited in the detection process. CS [4] is a recently intro-
duced framework based on sparsity and incoherent measure-
ments, which offers the potential to reduce the number of re-
quired measurements and/or to increase accuracy. The goal
is to overcome the limitations of WiFi-based passive radar
when it comes to the detection of closely spaced targets. To
this end, we first introduce CS and then apply it to WiFi-based
localization problems. Multiple target detection schemes are
proposed, depending on the number and modulation schemes
of the available BS.

Notation: Lowercase and uppercase boldface letters stand
for column vectors and matrices, respectively. An,m denotes
the matrix element at the nth row and the mth column. The
`2-norm of a vector x is denoted by ‖x‖2 and ‖x‖1 stands for
its `1-norm.

2. COMPRESSIVE SENSING

Compressive sensing (CS), as introduced in [4], allows to
sample a signal x ∈ CN with fewer measurements than the
Nyquist rate suggests. Measurements y ∈ CM with M < N
are performed through non-adaptive, linear projections

y = Φx + n (1)

with a measurement matrix Φ ∈ CM×N and additive noise
n ∈ CM . Solving (1) for x is an underdetermined problem
with no unique solution. If, however, x is sparse with only
a few non-zero entries K � N , CS allows to reconstruct
x provided the columns of Φ (called atoms) are sufficiently
incoherent, i.e. the inner product of any two columns of Φ is
small. The CS reconstruction problem can be formulated as a
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convex optimization problem

x̂ = min
x̃
‖x̃‖1 subject to ‖y −Φx̃‖2 ≤ ε, (2)

where ‖n‖2 ≤ ε. Since exactly solving (2) implies com-
plex computations, faster approximations are often preferred,
especially in an application like radar, where real-time recon-
struction is required.

Greedy algorithms are sparse recovery algorithms that it-
eratively approximate the sparse solution x̂. Matching pursuit
(MP) [5] iteratively identifies the atom that is most correlated
to the current signal estimate, followed by a simple update
to compute an improved signal estimate. While each itera-
tion of MP is computationally easy, the number of iterations
may be large due to slow convergence. Orthogonal matching
pursuit (OMP) [6], compressive sampling matching pursuit
(CoSaMP) [7], and subspace pursuit (SP) [8] are more so-
phisticated greedy algorithms that incorporate a least squares
(LS) step to compute the signal estimates. This LS step sig-
nificantly reduces the number of required iterations, but de-
mands high computational effort.

3. SPARSE LOCALIZATION

Ideas for exploiting sparsity and taking incoherent measure-
ments have been around for a long time in the radar literature
(some of them are reviewed in [9]), but only with the introduc-
tion of CS theory, those ideas gained more momentum. After
a brief comment on sparsity, the most prominent applications
of CS to radar are reviewed.

Sparsity Before CS can be applied, a discrete and finite-
dimensional representation of the radar scene must be found,
which results in a sparse vector x. In many radar applications,
this representation is established by a discrete grid defined in
the range-Doppler plane. Assuming sparsity on the range-
Doppler grid means that each object can be modeled as a point
target located on a grid point and having a certain discrete ve-
locity. This is a reasonable assumption for many small targets
and fine enough grids. In order to obtain truly sparse repre-
sentations, the grid must usually be chosen finer than what the
bandwidth or ambiguity function suggest. A four times over-
complete measurement matrix (i.e., four times more atoms
are used than the number needed to span the whole solution
space) has been shown to work well in many cases (e.g., [10]).
Especially in indoor environments, many reflections will be
received from walls, ceilings, etc., that cannot be sparsely
represented. Therefore, all clutter must be removed, e.g. by
background subtraction methods, before sparse recovery al-
gorithms can be applied.

Incoherent pulses The first paper on CS radar imaging [11]
proposed a system which transmits a pseudo noise (PN) or
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Fig. 1. Passive bistatic radar setup

chirp sequence. Such sequences are incoherent to point tar-
gets on a range-Doppler grid. The proposed receiver can
then be implemented as a low-rate analog-to-digital converter
(ADC)1 sampling below the Nyquist frequency. However,
subsampling at the receiver leads to a loss in the receiver
SNR. [12] proposed transmitting incoherent Alltop sequences
and receiving reflections with a Nyquist-rate ADC. CS-based
reconstruction then allows for higher detection performance.

Linear Projection CS can reduce the rate at which mea-
surements are acquired by projecting the high-bandwidth sig-
nal at the receiver onto a PN sequence, integrating the result,
and sampling it at a lower frequency. Using the example of
a ground penetrating radar, [13] increased the resolution with
this sampling scheme. While only very simple short pulses
need to be transmitted, the receivers need additional elements
for the linear projection, such as high-bandwidth mixers.

Pulse compression Step-frequency radars transmit pulses
at discrete frequencies. CS-based schemes proposed, e.g., in
[10] reduce the number of transmitted frequencies by select-
ing and transmitting only a random subset thereof. The dif-
ferent frequencies are either transmitted sequentially or at the
same time. Thus, either measurement time or receiver com-
plexity can be reduced. From a transmit energy point of view,
this system is more efficient than the incoherent pulses or lin-
ear projection approaches, since no energy is lost.

A passive radar system for OFDM signals using CS
was proposed in [14]. Digital video/audio broadcasting
(DVB/DAB) stations are used as illuminators to identify
flying targets. The number of symbols that must be known at
the receiver from trainings or after decoding using outer codes
was reduced while maintaining good detection accuracy.

4. HIGH ACCURACY WIFI RADAR

In this section, WiFi signals are analyzed for their suitability
for any of the CS radar schemes introduced in Section 3 in or-
der to increase target detection accuracy. IEEE 802.11 WiFi
standards [15] use direct sequence spread spectrum (DSSS)
modulation in the older 802.11b standard with 11 MHz
bandwidth and orthogonal frequency division multiplexing

1While the sampling rate of the ADC can be low, the supported input
bandwidth must still cover the full band. This leads to intentional aliasing.
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(OFDM) with 20 MHz bandwidth in the newer a/g/n stan-
dards. The WiFi setup considered is shown in Fig. 1. We
measure the differential bistatic delay τ = (rtx + rrx − rd)/c
(the delay between the reference signal and the reflection),
which translates into the target’s position, and the Doppler
frequency to obtain its velocity.

The ambiguity function [16] of a radar signal characterizes
how well radar targets with a certain delay and Doppler dif-
ference can be distinguished. An ambiguity function analysis
for WiFi signals was conducted in [16] and measured a range
resolution of 25.4 m (27.3 m theoretical) for DSSS beacons
and 18.8 m (18.1 m theoretical) for OFDM frames. The the-
oretical values are determined by the inverse of the actually
occupied bandwidth ∆r = c0/B. The Doppler resolution is
determined by the observation time; the observation of many
subsequent frames is required to obtain a good velocity reso-
lution. In both the range and Doppler dimensions, relatively
large sidelobes were identified, which explains the masking
of closely spaced targets as observed in [2, 3].

Since we aim at a high-resolution WiFi-radar, OFDM-
based standards are analyzed first due to their higher initial
bandwidth and, thus, better resolution.

4.1. OFDM-based WiFi

At the beginning of every 802.11 frame, known training sym-
bols are transmitted that allow the receiver to obtain a channel
estimate. In an OFDM training symbol, there are NDT = 52
out of NS = 64 OFDM subcarriers trained. Transforming
the resulting estimate into the time domain will reveal all re-
flections, and CS reconstruction can then identify the ones
corresponding to radar targets. With sparsity in a discrete
time basis and measurements performed in a subset of the dis-
crete Fourier basis, incoherence of the measurement matrix is
given. Thus, measuring trained subcarriers meets CS precon-
ditions for range estimations. The resulting system is similar
to pulse compression in a step-frequency radar, but without
much undersampling.

The maximum supported delay spread (and thus the max-
imum supported range) is defined by the length of the cyclic
prefix. In the long training phase, a double length cyclic
prefix of duration Tt = 1.6µs is used [15]. This results
in a maximum supported range (rmax = rtx + rrx − rd) of
rmax = Tt c0 = 480 m.

Also, previous WiFi-based passive radars [3] required a
reference signal obtained from an antenna placed right next to
the BS. This is, however, unnecessary in the described setup
since all training tones are known to the receiver.

4.2. Formulation as CS problem

In order to obtain a CS formulation, range as well as Doppler
frequencies must be described on a discrete grid. The sparse
vector x is composed of all the delay profiles xv ∈ RP

(with P data points in the range dimension) at all considered
Doppler frequencies ωv, v ∈ [1, V ] (with V data points in
the Doppler dimension) stacked on top of each other (see
(4)). This results in a vector x of size N = PV with a
sparsity K equal to the number of targets. The measurements
vector y contains all the measured subcarriers from L sub-
sequent frames, recorded at times tl, l ∈ [1, L]. Thus, the
measurement vector has a dimension of M = LNDT .

Next, the measurement matrix is constructed, which in-
cludes multiple discrete Fourier transforms. The Doppler
shift within one training sequence in assumed to be neg-
ligible (as in [14]).2 We define a discrete Fourier trans-
form (DFT) matrix F, which contains only a subset of
S = {s1 s2 . . . sNDT

} trained subcarriers and that limits
the length of the delay profile to P .

Fn,m =
1√
NDT

exp
(
−j2π sn · (m− 1)

NS

)
(3)

with n ∈ [1, NDT ], m ∈ [1, P ] forNDT measured pilot tones
and a delay profile length P ≤ NS . F is constructed from a
NS × NS DFT matrix by selecting only the first P columns
and the NDT rows corresponding to the pilot tones. Φ estab-
lishes a linear relation between the measurements yl of mul-
tiple frames at times tl, l ∈ [1, L] (assuming t1 = 0) and the
range profile xv at different Doppler shifts ωv, v ∈ [1, V ].


y1

y2

...
yL


︸ ︷︷ ︸

y

=


F . . . F

ejω1t2F . . . ejωV t2F
...

. . .
...

ejω1tLF . . . ejωV tLF


︸ ︷︷ ︸

Φ


x1

x2

...
xV


︸ ︷︷ ︸

x

(4)

4.3. Simulations

A simulation environment for an OFDM WiFi passive bistatic
radar was set up in order to test and evaluate CS-based tar-
get localization algorithms. The targets were distributed on
arbitrary positions on the range-Doppler plane. Since they
are not necessarily positioned on grid points, a fourfold over-
complete measurement matrix is applied (cf. Sec. 3). With
a 20 MHz sampling rate, the delay profile is represented by
32 samples, which increases to P = 128 for fourfold over-
completion. A maximum velocity of 100 km/h and a resolu-
tion of 0.5 m/s in rrx direction result in V = 61 grid points
in the Doppler domain. Vector x thus has a dimension of
N = PV = 7807. Assuming that 20 frames are recorded
at random times within a 50 ms period, an underdetermined
problem with only M = LNDT = 20 · 52 = 1040 mea-
surements results. The sparse delay profile x is then recov-
ered using (4) and MP [5]. Suppression of highly correlated

2Assuming a maximum velocity of 100 km/h, the maximal phase shift
during the 8µs training is ∆ω = 2πv/c0 Tfc = 0.011, which is negligible.
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Ground truth
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Fig. 2. OFDM passive radar simulation: correlation-based vs.
CS-based detection (L = 20 frames, noise-free)
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Fig. 3. OFDM passive radar simulation: SNR sweep with
various greedy reconstruction algorithms

neighbors of selected targets is applied for better reconstruc-
tion results and FFTs are used for fast processing speed.

In Fig. 2, CS reconstruction of a sparse scene with six
targets with different reflectivity (indicated by their color) is
compared to the image produced by correlating the received
and transmitted signals. One can clearly see that sidelobes in
the ambiguity function mask closely spaced targets in the cor-
relation image, while CS is still able to identify all six targets.
The effect of noise together with the performance of different
CS reconstruction algorithms is studied in Fig. 3 where the
percentage of correctly detected targets (arranged as in Fig. 2)
is evaluated. In this case, OMP shows the best performance.

5. MULTI-CHANNEL WIFI RADAR

CS-aided post processing can simplify the identification of
targets as shown above but it cannot go much beyond the res-
olution limits set by the ambiguity function. To overcome the
rather coarse resolution, increasing the measured bandwidth
seems to be the only viable solution.

In urban environments multiple BS, transmitting in differ-
ent channels, usually are within range. The trained subcarri-
ers of all occupied channels can be measured while others are
left unobserved, which corresponds to the principle of a step-
frequency radar. CS reconstruction algorithms can ’fill in’ the
holes and reproduce a sparse scene with the accuracy offered
by the entire available bandwidth instead of only one channel.
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Fig. 4. High resolution OFDM passive radar simulation:
correlation-based vs. CS-based detection with SNR 0 dB and
L = 20 frames (zoomed)

We consider the 2.4 GHz industrial, scientific, and med-
ical (ISM) band. The trained subcarriers of channels 1
through 13 (permitted in Europe) span a total bandwidth
of 76.6 MHz. This leads to a theoretical range resolution
of ∆r = c0/76.6 MHz= 3.92 m. The measurement matrix
defined in (4) must now be extended to include measure-
ments performed in different channels, which is achieved by
only a few changes on how the subset of trained subcarriers
is defined in (3). First, the sampling rate is increased from
20 MHz to 80 MHz (this is only the sampling rate at which
xv is represented; a physical sampling rate of 20 MHz is still
possible if the center frequency is tunable). Those 80 MHz
are subdivided into NS = 4 · 64 = 256 subcarriers. For
each received frame, a subset S ⊂ [1, NS ] of NDT = 52
subcarriers is measured and the corresponding DFT matrices
must include only the defined subcarriers FS .

y1

y2

...
yL

 =


FS1 . . . FS1

ejω1t2FS2 . . . ejωV t2FS2
...

. . .
...

ejω1tLFSL
. . . ejωV tLFSL




x1

x2

...
xV


(5)

Simulations with fourfold increased resolution and there-
fore four times smaller possible distance between targets were
performed. The results after measuring 20 frames randomly
distributed on channels 1, 5, 9, and 13 with 0 dB SNR are
presented in Fig. 4. Five of the six targets were exactly recov-
ered in this scenario by CS-based detection, one target only
approximately.

6. REDUCED SAMPLING RATE

When our goal is not to increase accuracy but to further re-
duce complexity, a different CS scheme needs to be applied.
Under normal circumstances, achieving the necessary sam-
pling rates for WiFi-signals is no problem. However, one
could think of energy-starved sensor nodes, where reducing
the number of acquired samples might be helpful to save
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Fig. 5. DSSS passive radar simulation: correlation and CS-
based detection with SNR 10 dB and L = 10 frames

power and memory. Transmitting DSSS-modulated frames
corresponds to transmitting an incoherent PN sequence as
proposed in [11]. The measurement matrix Φ then contains
shifted and subsampled versions of the transmitted Barker
PN code.

The simulated system records the SYNC and AFD fields
of an 802.11b frame [15]. It is assumed that 10 such frames
are recorded within 50 ms. The examples shown in Fig. 5
contains 4 targets and receives signals with an SNR of 10 dB.
Even with an undersampling factor of 128, CS reconstruction
allows for a perfect detection of all targets.

7. CONCLUSION

It has been shown that compressive sensing reconstruction al-
gorithms are suitable to detect targets with high accuracy in
OFDM/WiFi-based passive bistatic radars. Not only can the
proposed detection scheme distinguish closely spaced targets,
which are difficult to separate from the correlation results,
but it can also do so with only a few measurements at ran-
domly distributed times. The accuracy is further increased
when multiple base stations are in range, which can easily
be included into the presented CS formulation. Also, a low-
complexity scheme based on DSSS/WiFi was introduced. In
all simulations, only training symbols were included for de-
tection, which makes additional antennas to obtain a reference
signal redundant.
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