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    Figure 1 – Principle of Echo Cancellation. 
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ABSTRACT 

 

Regularization is an important part of adaptive filter design. 

Traditionally, the regularization parameter has been 

empirically selected, as there has not been a lot of work in 

the literature for determining an optimal method for finding 

its best value. In this work, we propose an adaptive method 

for finding the regularization parameter in the normalized 

least-mean-square (NLMS) algorithm. Furthermore, we 

apply this regularization approach in a frequency-domain 

version of the NLMS algorithm, in which a separate 

regularization parameter is computed for each frequency bin. 

Simulation results show that computing the regularization 

parameter for each frequency bin separately provided better 

performance for the filter, for the common case of colored 

noise excitation. 

 

Index Terms— Regularization, adaptive filter, NLMS, 

frequency-domain NLMS. 

 

1. INTRODUCTION 

 

Regularization is an important parameter in the NLMS 

adaptive filter. It helps keep the filter stable and, when 

selected properly, it also helps the filter converge to the 

optimal solution faster. However, while this parameter is 

very important in the design of adaptive filters in general, 

and the NLMS filter in particular, very little work has been 

done into estimating its optimal value. In this paper, we 

focus on developing an optimal value for the regularization 

parameter that adaptively changes as the excitation signal 

and noise environments change in time. In developing an 

adaptive regularization algorithm, we guarantee good results 

at any given time during the filtering process.  

Previous work by Benesty et al. [3] shows that the 

knowledge of the SNR, in addition to the knowledge of the 

excitation signal, can provide enough information to 

determine the optimum regularization parameter. This paper 

improves on that effort by adaptively determining the 

optimum regularization value rather than computing it 

beforehand.  

In order to consider the effects of colored noise, it was 

necessary to divide the signal into a number of frequency 

bins, for which the regularization parameter can be 

computed separately. Therefore, for our work, we used a 

frequency-domain version of the NLMS algorithm, in which 

we set the number of frequency bins to be equal to the 

number of filter taps for the adaptive NLMS filter used. We 

simulated several scenarios, with different noise types and 

various SNRs, and in this paper we present our analysis and 

the results of these simulations.  

The rest of the paper is organized as follows. Section 2 

describes the frequency-domain version of the NLMS 

algorithm. In Section 3, we describe our method for adaptive 

regularization. In Section 4, we provide a method to estimate 

the background noise. Section 5 presents our simulation 

results and Section 6 concludes the paper. 

 

2. FREQUENCY DOMAIN NLMS 

 

Figure 1 depicts an adaptive filter in a typical echo canceller 

arrangement.  The time-domain version of the NLMS 

algorithm can be summarized as the error calculation: 

 ˆ( ) ( ) ( ) ( 1)Te n = d n n n− −x h  (1) 

and the coefficient update calculation: 
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+
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where ( )d n is the near-end or desired signal, ( )nx is the far-

end or excitation signal vector, ( )ˆ nh is the echo path 

impulse response estimate at time n , ( )e n is the error signal, 

µ is the step size, and δ  is the regularization parameter.  

The desired signal, ( )d n  is  

 ( ) ( ) ( )d n y n w n= + , (3) 

where ( )y n is the echo and ( )w n is the background noise; 

( ) ( )Ty n n= h x where h
 

is the true echo path impulse 

response vector of length N . 

 

The algorithm for a frequency-domain LMS algorithm is 

described in [2].  Here we present a slightly modified 

version which includes bin-by-bin normalization as well as 

regularization. 

 

For a filter of size N , we define ( )kΩ as the Fourier 

transform of the estimated filter, padded with  N  zeros, 

 
ˆ ( )

( )
T

N

k
k =

 
 
  

h
Ω F

0
, (4) 

where N0 is a column vector of N  zeros and F is the 

2 2N N×  DFT matrix.  We define 

 
( )

( )
1

( )
k

k
k

=
 −
 
  

Χ F
x

x
, (5) 

where 

 ( ) ( ) ( )1
T

k x kN x kN N = + − x � . (6) 

Then, we get 

 ( ) ( )1
N N N Nk k

−
× ×  =     y 0 I F Ω X� , (7) 

where the symbol �  denotes the Hadamard product,  

N N×0 is an all zero N N× matrix, and N N×I  is the N N×  

identity matrix. The error can then be found as 

 
( ) ( )

( )
N

k
k k

=
 
 − 

E F
0

d y
. (8) 

We define 

 ( ) ( ) ( )( )1 *
 ( ) N N N Nk k k k−

× ×=    F E Χ∆ I 0 P� � , (9) 

where the symbol ∗  denotes conjugation,  

 ( ) ( )( ){ }1
k diag k δ

−
= +P S I , (10) 

where { }diag • means to convert the diagonal of a matrix 

into a vector.  Furthermore, 

 ( ) ( ) ( )11 ( ) ( )Hk k k kλ λ= + −−S S Χ Χ , (11) 

where the superscript H denotes the Hermitian operator and 

λ  is a forgetting factor.  

Finally, the update equation is 

 

 
( )

( 1) ( )
N

k
k k µ

 
+ +  

 

∆
Ω = Ω F

0
. (12) 

By using a frequency-domain version of the NLMS 

algorithm, it is possible to measure the SNR separately in 

each frequency bin, which will allow calculating a different 

regularization parameter for each frequency bin as well. In 

the following section, we outline our algorithm for 

adaptively estimating the regularization parameter. 

 

 

3. ADAPTIVE REGULARIZATION FOR THE NLMS 

ALGORITHM 

 

 

To adaptively optimize the regularization parameter δ  in 

the algorithm above, we use the criterion described in [3], 

where in the time domain, the variance of the a posteriori 

error is set equal to the variance of the background noise,  

 2 2
wεσ σ= , (13) 

where the a posteriori error is defined as 

 ˆ( ) ( ) ( ) ( )Tn d n n nε = − x h . (14) 

Using (2) it is easily shown that 

 
( ) ( )

( ) 1 ( )
( ) ( )

T

T

n n
n e n

n n
ε µ

δ

 
= − 

+  

x x

x x
. (15) 

Taking the variance of ( )nε , we get 

 

2

2 2( ) ( )
1 ( )

( ) ( )

T

T

n n
E e n

n n
εσ µ

δ

  
 = −   +  

x x

x x
. (16) 

Assuming that we can approximate
2[ ( ) ( )]T
xE n n Nσ≈x x , 

then using (16) in (13) and rearranging terms we derive 

 2 1e
x

e w

N
µσ

δ σ
σ σ

 
= − 

− 
. (17) 

This equation can be further simplified, by assuming the step 

size 1µ = , in which case, we get 

 
2 w
x

e w

N
σ

δ σ
σ σ

=
−

. (18) 

In our simulations, we use this equation to find the 

value ofδ for each frequency bin. As such, the values of 
2 , , and x w eσ σ σ are also separately calculated for each 

frequency bin. We also note that in the frequency bins, there 

is only one adaptive filter tap per bin, so 1.N =  

 To compute the values of 
2 , , and x w eσ σ σ we use 

leaky integrators. For example, for a certain frequency 

bin f , the thk  iteration for the excitation variance is 

 
( )

( ) ( )

2

2 *

,

       , 1 1 ( , ) ( , ),

x

x

f k

f k f k f k

σ

λσ λ= − + − Χ Χ
 (19) 
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where ( ),f kΧ
 
is the thf  element in ( )kΧ corresponding 

to frequency bin f . Similarly, , and w eσ σ were found using  

 
( )

( ) ( ) ( ) ( )

2

2 *

,

       , 1 1 , ,

w

w

f k

f k W f k W f k

σ
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=

− + −
 (20) 

and 
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2
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,

      , 1 1 , , ,

e

e

f k

f k E f k E f k

σ

λσ λ
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where ( ),W f k and ( ),E f k  represent the noise and error 

elements at frequency f and block k , respectively. Our 

adaptive regularization parameter is thus, 

 ( ) ( )
( )

( ) ( )
2 ,

, ,
, ,

w
x

e w

f k
f k f k

f k f k

σ
δ σ

σ σ
=

−
. (22) 

The problem with this result is that we assume that 

the frequency noise variance ( )2 ,w f kσ is known. This, 

however, is often not the case, so we estimate the variance of 

the background noise using the following analysis. 

 

 

4. ESTIMATION OF THE BACKGROUND NOISE 

VARIANCE 

 

In the previous section, we pointed out that in most cases it 

is not possible to know the background noise beforehand, 

and it is therefore necessary to estimate it. As we will see in 

the results section later in this paper, the known noise will 

lead to much better results, but the estimated noise variance 

still yields good results.  

The estimate for the noise variance is obtained in 

the following manner [2]. The cross-correlation vector 

between the excitation signal and the error is defined as 

 ( ) [ ( ) ( )]e n E n e n=xr x . (23) 

The error can be expressed as  

 
ˆ( ) ( ) ( ) ( ) ( )

      ( ) ( ) ( ),

T T

T

e n n w n n n

n n w n

= + −

= +

h x h x

∆h x
 (24) 

where  

 ( ) ( )ˆn n= −∆h h h . (25) 

Therefore, assuming that ( )x n is independent of ( )w n  it is 

easily shown that  

 ( ) ( )e n n= ∆x xxr R h , (26) 

where ( ) ( )TE n n =
 xxR x x .  The error variance is also 

easily shown to be  

 2 2 2( ) [ ( )] T
e wn E e nσ σ= = +xx∆h R ∆h . (27) 

After rearranging the terms, the noise signal estimator can be 

defined as 

 2 2 ( ) T
w e nσ σ= − xx∆h R ∆h . (28) 

If we assume (or approximate) the excitation signal is white 

then we can use (26) to calculate the background noise as 

 ( )
( ) ( )

( )
2 2

2

T
e e

w e

x

n n
n

n
σ σ

σ
≈ −

x xr r
. (29) 

In the frequency domain, ( )e nxr  reduces to the scalar 

( , )exr f k  since there, the adaptive filter length is 1N = .   

Calculating ( ) ,exr f k is once again done using the leaky 

integrator, 

 
( )

( ) ( ) ( ) ( )*

,

      , 1 1 , , .

ex

ex

r f k

r f k f k E f kλ λ= − + − Χ
 (30) 

The time varying noise estimate in the bins then becomes, 

 ( ) ( )
( )

( )

2

2 2

2

,
, ,

,

ex

w e
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r f k
f k f k

f k
σ σ

σ
≈ − . (31) 

This is used in (22) for the frequency-domain time-varying 

optimal regularization estimate. 

 

5. SIMULATIONS AND RESULTS 

 

For our simulations, we compared three scenarios. In all 

cases, the regularization parameter ( ),f kδ  was calculated 

adaptively. In each of the simulations for one plot, 

one ( )nδ was calculated in the time domain and used for all 

frequency bands, in the other plot ( ),f kδ is updated each 

frame and in each frequency bin where the number of 

frequency bins is equal to the number of filter.  

 To assess the performance of the algorithms and the 

effectiveness of the regularization method, we plot the 

normalized error coefficient as a function of time for each of 

the selected cases. The error coefficient is defined as 

 ( )
( )( ) ( )( )

10

ˆ ˆ

10 log

T

T

n n
nξ

 
 

=  
 
 

h - h h - h

h h
. (32) 

Figures 2 through 4 show the error coefficient 

defined in (32) for a number of input signal and background 

noise combinations. To demonstrate re-convergence and 

echo path change is effected in the middle of the 

simulations. Figure 2 shows the error coefficient when the 

input is a white noise signal while the background noise is 

also white. Results show that our algorithm for finding an 

adaptive regularization in the frequency domain does not 

provide improvement over that found using full band 

regularization. In fact, the full band calculation provides a 

slightly better error. This is to be expected since both the 

input and noise are white.  

However, significant improvement is seen when a 

colored rather than a white input signal is used, as 

demonstrated by Figures 3 and 4. In Figure 3, the input 

signal is colored noise, and even though the background 
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noise is white, we can clearly see that the frequency-domain 

adaptive regularization provides better performance than the 

full band regularization parameter. The results are similar 

when using colored noise in the background. 

 

 

6. CONCLUSION 

 

In this paper, we developed an adaptive algorithm for 

calculating the optimum regularization parameter (δ) for the 

NLMS algorithm in the frequency domain. To assess the 

ability of this algorithm to accurately determine the optimum 

value of δ in a colored noise environment, we used a 

frequency-domain version of the NLMS algorithm, and 

adaptively calculated a separate value for δ for each 

frequency bin. Simulations show that for the common case 

of colored excitation, the frequency domain adaptive 

regularization significantly outperforms adaptive 

regularization done in the time domain.  
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Figure 3. Coefficient error versus frame 

number.   Input signal is colored and the 

interfering signal is white. 

Figure 2. Coefficient error versus frame number.  

Both input and interfering signals are white. 

Figure 4. . Coefficient error versus frame 

number.  Both input and interfering signals are 

colored. 
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