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ABSTRACT

We present an adaptive method to segment Haussman-
nian facades from street level images. Our approach as-
sumes that images are rectified, cropped and their ele-
ments are aligned in a pseudo-regular structure. It is
based on the accumulation of directional color gradients,
combined with morphological filters in order to deal with
textured facades. We propose an automatic parametriza-
tion of three filters included in the process: opening fil-
ter of size nop, alternate sequential filter (ASF) of size n,
and H-minima filter with contrast threshold h. This au-
tomatic selection offers robustness to noise, image reso-
lution changes, shadows and textures. Quantitative and
qualitative results are reported on a public annotated
database, validating the good performances of our ap-
proach.

Index Terms— Mathematical morphology, facade
segmentation, window detection, urban modeling

1. INTRODUCTION

Digital 3D city models are useful for many applications:
urban planning, emergency response simulation, cultural
heritage documentation, virtual tourism, route planning,
studies of accessibility for disabled people, among oth-
ers. Thanks to availability of new types of 3D data,
an increasing number of geographic applications such as
Google Earth, Microsoft Virtual Earth and Geoportail
are flourishing nowadays. Some of these applications do
not only require to look realistic, but also have to be
faithful to reality.

Initially, virtual scenarios were created by infographic
approaches, leading to time-consuming procedures, un-
suitable for large-scale urban modeling. Procedural mod-
eling allows to speed up the 3D virtual environment cre-
ation [1]. It is based on a set of rules, a grammar, defin-
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ing a given architectural style. Procedural modeling ap-
proaches create realistic models in an efficient way, but a
precise parametrization is required if the model has to be
faithful to reality. Automatic analysis of facade images,
combined with procedural modeling, allows to increase
the productivity while remaining faithful to reality.

Many algorithms focusing on automatic facade anal-
ysis have been designed in the recent years. In general,
existing methods use rectified and cropped images con-
taining a single building. Usually, individual buildings
are manually extracted. In [2], Lee and Nevatia develop
a method based on thresholding of directional gradient
projections. In [1], Müller et al. find repetitive archi-
tectural structures using mutual information to describe
a single facade image. These methods are very sensi-
tive to noise and fail if the building contains textured
walls or balconies with different wrought iron designs,
very common elements in Parisian Haussmannian archi-
tecture. In [3], Hernández et al. describe a method that
automatically extracts an isolated building from a city
block street level image. Besides, they extend Lee and
Nevatia method introducing morphological filters in the
directional gradient projections. These filters improve
the robustness to textured facades. In [4], Teboul et al.
learn a shape dictionary using random forest technique
and publish an annotated database with 100 building im-
ages. In [5], Hammoudi extracts facade structures from
3D point clouds data using Hough transform. Finally,
in [6], Pinte et al. combine color information and 3D
point cloud data to improve the method robustness.

In this paper we focus on morphological directional
gradient projections combined with morphological filters.
We study the adaptive parameter tuning of these filters
and evaluate the proposed algorithm on the cited public
database. The paper is organized as follows. Section 2
describes the morphological directional gradient projec-
tion technique, illustrated on a vertical splitting exam-
ple. Section 3 describes the filter parametrization tech-
nique. Section 4 shows the performance of our method
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on Teboul’s annotated database. Finally, Section 5 is
devoted to conclude this work.

2. SEGMENTATION OF BUILDING
FACADES

The starting point for our approach is the method devel-
oped by Hernández et al. [3]. Input images are assumed
rectified and cropped, as shown in Fig. 2(b). Fig. 1 shows
the diagram of the whole process and Fig. 2 illustrates
intermediate images. First, a morphological vertical gra-
dient Gy(x, y) detects horizontal contours (Fig. 2(c)).
Then, a horizontal opening filter of size nop is applied
in order to eliminate the undesirable details. Fig. 2(e)
shows the accumulation, column by column, of the verti-
cal gradient. This 1D projected gradient contains peaks
at window locations and valleys between them.

Fig. 1. Process scheme to compute vertical divisions.

Afterwards, this projection is filtered in order to get a
single maximum for each window. An Alternate Sequen-
tial Filter (ASF) of size n and a H-minima filter are used
for this purpose. Finally, this profile is inverted and a wa-
tershed process computes the facade division. Fig. 2(f)
shows the final result superimposed on the original im-
age. Although a vertical splitting is shown, the same
technique applies to horizontal splitting, just changing
vertical by horizontal and vice versa.

A frequency domain analysis of this profile would also
be possible, but our approach is more robust to pseudo-
periodic structures. Fig. 3 shows some qualitative results
demonstrating the robustness of our method to occlu-
sions, shadows and rectification problems. Note that our
method is robust to rectification errors as long as a line
can pass trough the wall without touching any window.

3. FILTERING PARAMETRIZATION

The method introduced in the previous section leads to
interesting results but relies on a good filter parametriza-
tion. Specifically, three parameters require tuning: the
size nop for the horizontal opening, the size n for the
ASF, and the contrast threshold h for the H-minima
filter. If these parameters are too small, the result will
be over-segmented (Figures 5(a) and 5(b)). On the
other hand, if they are too big, the result will be under-
segmented (Fig. 5(d)). The aim of this section is to tune
in an adaptive way these filter parameters, according to

(a) Street level image (b) Isolated building

(c) Morphological verti-
cal gradient: Gy(x, y)

(d) Horizontal Opening

(e) Vertical projection,
filtering and watershed

(f) Vertical splitting

Fig. 2. Vertical splitting. Image from [3].

Fig. 3. Facade divisions. Images from [3].

intrinsic image information. The parameter tuning of
each step is explained below.
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3.1. Opening filter parametrization

Windows are the image largest structures. Small de-
tails such as facade ornaments, wrought iron balconies
or other noisy structures can produce fake divisions on
projected profile Py(Gy). A morphological opening with
a horizontal structuring element of size nop is used in or-
der to get rid of these details from gradient images. The
selection of nop is based on the pattern spectrum [7, 8].
Pattern spectrum (PS) plots the quantity of information
filtered out by each opening γi: (PSi =

∑
∀pixel(γi−1 −

γi)). The resulting curve is also called size distribution
because its peaks correspond to the prevailing sizes of
the image structures.

Fig. 4 shows size distributions for different Gy(x, y)
images. These curves present an important peak for
small size openings. This peak corresponds to noisy de-
tails. Note that this peak exists for the three images in
spite of shadows (Fig. 10(e)), balconies (Fig. 10(b)),
and vegetation (Fig. 10(d)). The opening size is cho-
sen as the value i for which the pattern spectrum falls
down under 25% of its maximum. This selection offers
robustness to image resolution changes.

Fig. 4. Size distribution of Gy(x, y) with a horizontal
structuring element. Test images correspond to Fig. 10.

3.2. ASF filter parametrization

An ASF consists in a sequence of openings (γ) and clos-
ings (ϕ) of increasing sizes. The sequence starts with
the filter of size 1 and ends with the filter of size n:
ASFn(Py(Gy)) = γnϕn...γ2ϕ2γ1ϕ1(Py(Gy)). This filter
is particularly appropriated when the noise is present
over a wide range of scales [9]. The filter size is chosen
based on the facade regularity. Several filters of different
sizes are applied, and the one leading to the most regular
result is chosen. The regularity is estimated by the stan-
dard deviation σ of the segmented facade division sizes.
This filter is applied to 1D profiles. Thus, evaluating
different sizes is not a time-consuming task.

Fig. 5 shows the resulting vertical divisions for differ-
ent filter sizes. Note that the filter size that minimizes
the standard deviation, n=7, leads to a correct facade
division.

(a) n=0, σ=7.70 (b) n=1, σ=14.01

(c) n=7, σ=6.24 (d) n=11, σ=68.90

Fig. 5. Divisions for different ASF sizes. Image from [3].

3.3. H-minima filter parametrization

H-minima filter is a filtering tool based on a contrast cri-
terion. More precisely, this transformation suppresses all
minima whose contrast is lower than a given threshold
h [10]. The contrast threshold h is chosen as a percent-
age of the dynamic of the extrema in the profile, that is
h ∝ max(f)−min(f), where f = ASFn(Py(Gy)). This
adaptive selection provides independence with respect to
image resolution. Fig. 6 illustrates the effect of ASF and
H-minima filtering. Note that the strongest filtering is
carried out by the ASF, while the H-minima removes still
remaining possible low contasted extrema, as shown in
the left side of Fig. 6.

3.4. Window detection

We assume that there is only one column of windows
per vertical division. Analyzing the extrema of the fil-
tered profile P̃y(Gy), we found that minima pass through
the wall while maxima pass through the windows. Using
this information, we apply a constrained watershed on
the projected horizontal gradient Py(Gx), taking the ex-

trema of P̃y(Gy) as markers. Fig. 7 illustrates the process
of window detection.
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Fig. 6. ASF and H-minima filtering. The original profile
corresponds to Fig. 10(a).

Fig. 7. Location of the vertical edge of the windows.

4. EXPERIMENTS

Our method is tested on the public database [4] that
contains 100 images. Images are rectified and various
semantic elements are manually annotated. An example
is shown in Fig. 8. We evaluate our system on window
localization with the classic precision (P ), recall (R) and
fmean criteria. P is the fraction of retrieved instances
that are relevant, R is the fraction of relevant instances
that are retrieved taking all relevant instances in the
database into account, and fmean = 2PR/(P +R).

(a) monge 19 (b) Ground truth (c) Detection

Fig. 8. Example of an annotated image from [4].

Note that our procedure detects windows including
their corresponding balconies. In order to evaluate cor-

rectly the window detection performance, we remove
from our detection the ground truth balconies regions.
Fig. 9(a) shows the evaluation scores obtained with
increasing ASF sizes. We can observe that the maxi-
mum fmean=0.79 corresponds to filters of size between
7 and 10. If we use the ASF fitting method proposed
in Section 3.2, we get the same score, the maximum in
the figure, which proves the efficiency of the proposed
tuning.

Once the parameters nop and n are chosen according
to the procedure aforementioned, we need to choose the
best h threshold for the H-minima filter. Fig. 9(b) shows
an exhaustive test varying h from 1% to 30% of the dy-
namic in the profiles. The best values found in the test
correspond to hv=14% and hh=2.5% of the dynamic for
the vertical and horizontal filter thresholds, respectively.
Note that this parameter is not so critical since the lowest
and highest fmean correspond to 0.78 and 0.80, respec-
tively. However, it improves the global performance up
to 1% with respect to Fig. 9(a), where H-minima filter is
not applied.

(a) ASF size (b) H-minima thresholds

Fig. 9. fmean sensitivity to parameters n, hh and hv.

The results reported by Teboul et al. are P = 0.65,
R = 0.81 and fmean = 0.72, these figures are computed
from the confusion matrix of [4] considering windows and
balconies in the same category. However, they only test
10 images of the database, while we have run our exper-
iments on the whole dataset.

Using our proposed adaptive parameter tuning, the
results are P = 0.82, R = 0.79 and fmean = 0.80, which
is much better than other results reported in the litera-
ture on the public Teboul’s database. Qualitative results
are shown in Fig. 10. Figures 10(a), 10(b) and 10(c) show
examples in which the proposed method fails. Those im-
ages do not respect the regularity hypothesis on which
our system is based: some window columns are almost
adjacent. The standard deviation of division width is
smaller when those columns are merged than when they
are separated. Figures 10(d), 10(e) and 10(f) present the
robustness of our system to shadows, textures and im-
ages on which the distance between windows are pseudo-
regular.
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(a) monge 34 (b) monge 58 (c) monge 63

(d) monge 13 (e) monge 55 (f) monge 85

Fig. 10. Examples of results. Images from [4].

Although developing a real time application is out
of this work scope, the process takes approximatively 0.7
seconds per image on an Intel(R) Core(TM) i7 CPU 2.93
GHz and 8 GB memory desktop computer.

5. CONCLUSIONS

We propose an automatic parameter tuning of the three
filters in the process: i) size nop of the opening filter is de-
duced from the pattern spectrum analysis of gradient im-
ages. This filter removes texture details on the facade in
order to avoid fake divisions. Moreover, its adaptive tun-
ing offers robustness to image resolution changes. ii) Size
n of the ASF is chosen as the value that minimizes the
standard deviation σ of the segmented region sizes. This
filter size has a strong influence on the result, as shown
in Fig. 5. Its adaptive tunning leads to the best result
among all filter sizes. And, iii) contrast threshold h in
the H-minima filter is chosen as a percentage of the dy-
namic of the extrema in the profile. The sensitivity to
this parameter is very low, that means that the spurious
maxima remaining after the ASF are very low contrasted,
as shown in Fig. 6. This filter improves fmean criterion
by 1% (from 79% to 80%).

The adaptive parameter tuning offers robustness to
noise, image resolution changes, shadows and textures.
These adaptive filters lead to the best performance score
compared to any filter parameters tested in an exhaustive
way. If the database resolution had been heterogeneous,
the results would have been even better than the score
with any filter parameter, because our parameters would

have been adapted to each image size. Qualitative and
quantitative results are reported. Our performances are
better than others reported in the literature on Teboul’s
public database. Thus, our approach is validated.

In the future, the use of an adaptive opening opera-
tor, called ultimate opening, will be studied. This opera-
tor automatically adapts its size to the image structures,
based on a contrast criterion.

6. ACKNOWLEDGEMENTS

The work reported in this paper has been performed
as part of Cap Digital Business Cluster TerraNumerica
project.

7. REFERENCES

[1] P. Müller, G. Zeng, P. Wonka, and L. Van
Gool, “Image-based procedural modeling of fa-
cades,” ACM Transactions on Graphics, vol. 26,
no. 3, pp. 85–93, 2007.

[2] S. C. Lee and R. Nevatia, “Extraction and integra-
tion of window in a 3d building model from ground
view images,” IEEE Computer Vision and Pattern
Recognition, vol. 02, pp. 113–120, 2004.

[3] J. Hernández and B. Marcotegui, “Morphologi-
cal segmentation of building façade images,” in
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