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ABSTRACT

We propose a novel kernel adaptive filtering algorithm that
selectively updates a few coefficients at each iteration by pro-
jecting the current filter onto the zero instantaneous-error hy-
perplane along a certain time-dependent affine subspace. Co-
herence is exploited for selecting the coefficients to be up-
dated as well as for measuring the novelty of new data. The
proposed algorithm is a natural extension of the normalized
kernel least mean squares algorithm operating iterative hy-
perplane projections in a reproducing kernel Hilbert space.
The proposed algorithm enjoys low computational complex-
ity. Numerical examples indicate high potential of the pro-
posed algorithm.

Index Terms— kernel adaptive filter, projection algo-
rithms, reproducing kernel Hilbert space, normalized kernel
least mean square algorithm

1. INTRODUCTION

Kernel adaptive filtering has received considerable attention
as an attractive approach to nonlinear function estimation
tasks [1-9]. The existing algorithms can be classified into
two general categories [9]: the reproducing kernel Hilbert
space (RKHS) approach and the parameter-space approach
(see Section 2). The RKHS approach would be more rea-
sonable from the function approximation point of view. Its
major drawback is however that the filter is updated only
when a new datum is added into the dictionary, although a
certain amount of computation is required at every iteration
for dictionary construction.

In this paper, we propose the hyperplane projection along
affine subspace (HYPASS) algorithm which falls into the
RKHS approach. The key is that the filter is updated at
every iteration because such data that are discarded in the
dictionary-construction process are exploited to adjust the co-
efficients of the present dictionary elements so that the instan-
taneous error for that specific data becomes nearly zero. This
is accomplished by projecting the current filter onto the zero
instantaneous-error hyperplane along the subspace spanned
by the dictionary elements. When new datum is added into
the dictionary, the algorithm is automatically reduced to the
the normalized kernel least mean square algorithm [7, Chap-
ter 2]. The proposed algorithm is thus systematic unlike a
heuristic way of combining the RKHS and parameter-space
approaches. To reduce the computational complexity of the
algorithm, a low-complexity version is derived by introducing
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the mechanism of selectively updating only a few coefficients
associated with the dictionary elements that are maximally
coherent to the newly observed data. The selective update is
realized by replacing the subspace used in the fully-updating
algorithm by its subset which is an affine subspace. The
proposed selectively-updating algorithm (HYPASS) includes
the fully-updating algorithm as its particular case. The ma-
jor benefits of the proposed algorithm include that a simple
criterion can be adopted for dictionary construction and that
high estimation accuracy can be achieved with a reasonably
small size of dictionary. This is because each coefficient is
polished many times according to the incoming data in the
best way in the sense of the minimal disturbance in RKHS.
We therefore adopt the simple coherence criterion [6] for the
dictionary construction and the selection of coefficients to be
updated. Numerical examples indicate high potential of the
proposed algorithm.

2. KERNEL ADAPTIVE FILTER AND GENERAL
CLASSIFICATION OF EXISTING ALGORITHMS

We address the general problem of estimating an unknown
nonlinear function ¢ : U4 — R adaptively according to the
input vector u,, € U and the output d,, := ¥(u,,) € R which
are observed sequentially. Here / C R’ denotes the input
space. In kernel adaptive filtering, the nonlinear function 1) is
estimated in the following form:

on(u) = Z hjnk(u,u;), w €U, neN, )
JETn

where k : U x U — R is a positive definite kernel, 7,, :=

G MY € 10,1, n} is an index set indi-

cating the dictionary {k(-,u;)} e g, (ry is the dictionary size
at time n), and h;, € R is a coefficient of x(-,u;) at time
instant n. (Due to the limitation in memory and computa-
tional resources, it is practically infeasible to exploit all the
data and hence a selection of data is required to form a dic-
tionary; see Section 3.) Assume for simplicity that a Gaus-

sian kernel x(x,y) = exp (*CHGJ - yHQ), T,y € U,is

employed, although any other kernel can be employed. Here,
¢ > 01is the kernel parameter and ||-|| stands for the Euclidean
norm which is induced by the standard inner product (-, -). In
this case, % (-, u;) is a Gaussian function centered at u;. We
denote by H the reproducing kernel Hilbert space (RKHS)
associated with x and ¢/. Also denote by (-, -),, and ||-||,, the
inner product and its induced norm defined in H, respectively.

Definition 1 (Metric projection). Let X’ be a real Hilbert
space and |-|| 5, the norm defined in X. Also let C C X



be a closed convex subset of X. Then, for any point x € X,
there exists the unique point ©* € C such that ||z — z*|| ,, <
ly — «*|| v, Yy € C [10]. The point x* is called the metric
projection of x onto C and denoted by Pc ().

From the vector space projection viewpoint, we can clas-
sify the existing kernel adaptive filtering algorithms into two
general categories, each of which is represented by the fol-
lowing update equations:

Pnt+l = Pn + U (PHW, (‘pn) - Spn) , 2
hni1 = hy + p(Pu, (hn) — hy) . 3

Here, ;1 € (0, 2) is the step size and

IT,, := {g eH: g(un) = <ga ’i('aun»H = dn}; 4)
Hy,:={heR™:(hk,) =d,}, 3)

are hyperplanes in H and R™, respectively, with h,, :=

[hjin),n’ hjén),n’ cee ,h],;:),n]—r and k?n = [Ii(’uljin) s un),

ottt
for transposition. The algorithm in (2) is the normalized
kernel least mean square algorithm presented in [7, Chap-
ter 2], and the algorithm in (3) is the kernel normalized
least mean square algorithm proposed in [6]. The algo-
rithm in (2) is based on the RKHS-inner-product expression
©n(un) == (pn, K(:;un)),, of the filter output, and we refer
to those algorithms based on this expression as the RKHS ap-
proach. The algorithms presented in [1,2,4,5, 8] fall into this
approach. On the other hand, the algorithm in (3) is based
on the parameter-space- (Euclidean-space-) inner-product
expression p,(u,) := (h,, k,), and we refer to those al-
gorithms based on this another inner-product expression as
the parameter-space approach. The algorithms presented in
[3,6,9] fall into this approach.

, n(uj;.n) ,uy,)]T; the superscript ()T stands

3. FULLY-UPDATING HYPASS ALGORITHM

In the parameter-space algorithm in (3), the update direction
is given by the normal vector k, of H, (or its negative),
meaning that the projection Py, (h,,) is always feasible and
that all the coefficients h; ,, are updated at every iteration. In
contrast, in the RKHS algorithm in (2), the update direction
is given by the normal vector (-, u,) of II, (or its nega-
tive), meaning that the projection Py, () is feasible (and
thus the filter is updated) only when the new datum is added
into the dictionary. Another remarkable difference from the
parameter-space algorithm is that only the coefficient for the
newly added function (-, u,) is updated. In the RKHS algo-
rithm for p = 1, the updated vector ¢, 11 = P, (pr,) is the
closest point in H from the current filter ,, that makes an in-
stantaneous error be zero. The projection viewpoint presented
above brings a natural idea to extend the RKHS algorithm so
that the projection becomes always feasible as explained be-
low.
Let J_1 := 0. The dictionary index set 7, is defined as

T = Tn—1 U {n} if new datum wu,, is sufficiently novel
neT 1 otherwise.
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Fig. 1. A geometric interpretation of Algorithm 1 for p = 1.

For the novelty criterion, we adopt the coherence criterion
[6] due to its simplicity, although another criterion can be
exploited for better performance. We define the subspace
spanned by the dictionary elements at time instant n as fol-
lows:

M,, := span{k(-,u;)}je7,,

which may or may not include the Gaussian function s (-, u,,)
centered at the current input vector u,,. Since the filter is
restricted to the subspace M,, due to the limitation in memory
and computational resources, our primitive idea is given as
follows: find the closest point, from the current filter ¢,, in
M, , that makes an instantaneous error be zero (following the
minimal disturbance principle). The problem is formulated as
follows: minimize ez, ||f — ¢nll4 subject to f(u,) = dn,
or equivalently

semin A = enlla (6)
where I1,, is defined in (4). The solution of the problem in (6)
is given by Py, n,, (¢n) which is the orthogonal projection
of ¢,, onto the intersection M,, N1I,,. Due to the use of the co-
herence criterion, the problem in (6) is always feasible since
the intersection M,, N II,, is ensured to be a nonempty affine
subspace. Based on this orthogonal projection, the proposed
algorithm is given as follows.

Algorithm 1. For the initial estimate po = 0, update the
nonlinear filter p,, at each time instant n € N by

Pn+1 1= Pn + p (Prr,nm, (0n) —¢n), n €N, (7)

where p € (0,2) is the step size.
We can show that (see Appendix)

Py, o, ((Pn) = ¢on + BnPu, ("'@('7 Uupy)) (8)
for some (3, € R. The projection Pay, (k(-, w,,)) is written as

Py, (K('vun)) = Z ajﬁ('auj)a aj; € R. )]

JE€ETn

By (7)—(9), we obtain

Pn41 = Z (hj,n + /J/ﬁnaj)ﬁ('; u_]) (10)

JE€ETn



T
) ijf.z)} €

R™ is characterized as a solution to the following normal
equation [10]:

The coefficient vector o := Qim) s Qimyy
1 2

Ky,a=y,, (1)

where

RKlUW.(n),W.(n e KU (), W (0
( 3 )) ( G Jﬁn))

Kn = 9 (12)
RKlUW.n),W.(n e R IU (), WU (0
( i )) ( i) Jﬁn))

T
Y, = [/{ (ujin) , un) R (“j,ﬁ"”“")} . (13)

Substituting (9) into (8) and then substituting ¢ = Pas,, A1, (©n)

into g(u,) = d,, appearing in (4), we obtain with simple ma-
nipulations

dy — @n(u'n)
Zjejn O‘jﬁ(u‘muj)

6n:

(14)

A geometric interpretation of Algorithm 1 is presented in
Fig. 1. One can intuitively understand (8) by observing that
the displacement vector from the current filter ¢,, to its pro-
jection ¢y, onto the intersection M,, N II,, is given by scal-
ing the projection of the normal vector (-, u,,) of II,, onto
the subspace M, . In the special case that k(-, u,,) € M, Al-
gorithm 1 is reduced to the algorithm in (2). This implies that
Algorithm 1 is a natural extension of the algorithm in (2) so
that the coefficients are updated at every iteration no matter if
observed data are added into the dictionary or not.

Although Algorithm 1 exhibits excellent performance (as
will be seen in Section 5), it involves the inversion of the
ryn, X T, matrix K ,, which could be prohibitive when the dic-
tionary size r,, is large. In the following section, we intro-
duce a selectively-updating mechanism to Algorithm 1, which
turns out to reduce the computational complexity remarkably
while maintaining reasonable performance.

4. THE HYPASS ALGORITHM

The key idea for the selective update is the following:
pick up only a few, say @, coefficients that are maxi-
mally coherent to the current data and update only the se-
lected coefficients. To be precise, we choose the subset

Iy = Lgn), L(Q"), - ,L(n)} C Jn such that (-, u,), ¢ € Z,,

has the largest coherence to k(-, u,); ie.,
"‘@(uuun) > ﬁ(uﬁun)a Veel,, Vjc Jn\Im (15)

provided that r, > @ (i.e., the dictionary size is larger than
Q). Ifr, < @Q,all the coefficients are updated; i.e., Z,, := J,,.
To update the coefficients associated with the index set 7,
and keep the other coefficients unchanged, the displacement
vector from the current filter ¢,, to the next one ¢,,4; should
lie in the subspace

My, = Span{’i('a UL)}LGI,L C M,. (16)
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As such, @11 is constrained in the affine subspace

Vo= on + M, :={¢n+f:fez\”4n}. (17)

The primitive idea of the proposed selectively-updating
algorithm is quite similar to that of Algorithm 1: find the clos-
est point, from the current filter ,, in the affine subspace V,,,
that makes an instantaneous error be zero. Such a point is
obviously given by the projection of (,, onto the intersection
V,, N 11, leading to the following algorithm.

Algorithm 2. For the initial estimate ¢o := 0, update the
nonlinear filter p,, at each time instant n € N by

Pnt1 = @ + 1 (Pv,am, (9n) — ¢n), (18)
where i € (0,2) is the step size.
We can show that (see Appendix)

Py, m, (0n) = @n + BnPI\?[,L (K (- un)) 19)

for some constant 3,, € R. The projection Py (5(un)) is
written in the following form:

Py (k(vun)) = > k(- u), & €R. (20)
LET,

By (18)—(20), we obtain

On+1 1= Z(hL,TL—’—IU/BTLdL)K‘(.?uL)—i_ Z h]}’nﬁ('a’u‘j)'

LET, FEIT\TIn
(21)
T
The coefficient vector & := {dL(m,dL(n), cee ’@L“’”} R
1 2 Pn
where p,, := min{r,, @}, is obtained by solving
K,.&=7,, (22)

where

K (uLgn)7uL§n)) o R (’U,L(ln) 5 ub;f:,,))

K, = : : . (23)

i (g ) - (g

-

Y, = [/@ (ubgn) , un) RN (uL;m,un)} . 24)
The constant [3,, is given by
2 d — ¥ n

By = < n = Pnltin) (25)

ZLEIn ONZLH(un; UL) .

The case that ) = 1 is of particular interest because the algo-
rithm becomes particularly simple as follows:

Ii(un,’U,L) K('aub)v (26)

Pntl = Pn + [



where £(-,u,) has the maximum coherence to k(-, uy)
among {k(-,u;j)}jez, (n € J, = ¢ = n). Despite its
simplicity, the algorithm works well reasonably as shown in
Section 5.

The summary of Algorithm 2 is presented in Table 1.
Clearly, Algorithm 1 is a particular case of Algorithm 2 for
@ = oo. We name Algorithm 2 the HYperplane Projection
along Affine SubSpace (HYPASS) algorithm. A geometric
interpretation of Algorithm 2 is presented in Fig. 2. As we
choose the set of vectors {x(-,u,)},ez, that are maximally
coherent to (-, u,), the projection Py; (¢,) employed in
Algorithm 2 is expected to be a good approximation of the
projection Py, (¢r,) which is employed in Algorithm 1. This
intuition is supported by the numerical examples presented
in Section 5. We emphasize that coherence is an efficient but
not the only criterion of selecting 7,, and Z,, in HYPASS, and
a better criterion could be devised.

Relation to some previous works: Algorithms related to
HYPASS have been proposed in [1,8]. The algorithm in [1]
updates the nonlinear filter in the same direction as HYPASS
for Q = oo but HYPASS has a wider range of step size in
addition that the criterion of designing the dictionary is dif-
ferent. On the other hand, the quantized kernel least mean
square (QKLMS) algorithm in [1] is related to HYPASS for
(@ = 1, and the difference is such as LMS and normalized
LMS; QKLMS has no denominator %(w,,, w,) in (26).
Computational complexity: The number of multiplications
involved in the filter update by Algorithm 2 is (Q*—Q)L/2+
0(Q?) + Q? + 2Q. When Q is sufficiently small, this is neg-
ligible compared to the -, L multiplications required for com-
puting the filter output. (A typical value of @) for achieving
reasonable performance is @) < 3.) In addition, the algorithm
requires comparison operations for the dictionary construc-
tion and the Z,, construction both of which are based on the
coherence. When Q = 1, the total number of comparisons to
be performed is only r,,, which is the same as the number of
comparisons required solely for the dictionary construction.
This is because one can operate r,, — 1 comparisons to find
such a k(-,u;+), j* € J,, that has the largest coherence to
(-, u,,) and then compare the value of (u;-,u,) with the
threshold 0. If k(w+, u,,) < 4,then k(-, uy,) is added into the
dictionary and Z,, := {n}. Otherwise x(-,u, ) is not added
into the dictionary and Z,, := {j*}. In the general case, the al-
gorithm requires no more than r,, +(Q—1) (r,, — (Q + 2)/2)
comparisons.

5. NUMERICAL EXAMPLES

The performance of the proposed algorithm is evaluated in
the application to online prediction of the time-series data
generated by d,, := [0.8 — 0.5exp(—d2_{)]dn_1 — [0.3 +
0.9exp(—d?_;)]dy—2 + 0.1sin(dy,—17) ford_g := d_q :=
0.1. We predict each datum d,, by a kernel adaptive filter
with its input w,, := [d,_1,d, 2]" € U C RY (L = 2),
where d,, := d,, + vn,n € N, where v,, ~ N (0,0.01). The
proposed algorithm is compared with the RKHS hyperplane-
projection algorithm [7, Chapter 2] in (2), the parameter-
space hyperplane-projection algorithm [6] in (3), and another
RKHS algorithm, QKLMS [8]. The first two conventional
algorithms are referred to simply as the RKHS algorithm and
the parameter-space algorithm, respectively. We adopt the
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Table 1. Summary of Algorithm 2.
The HYPASS Algorithm
Requirement : step size € [0, 2]
Initialization : J_ := 0
Filter output : ¢, (u,,) =
Filter update :
1. Define 7, based, e.g., on the coherence criterion.
2.Ifn € Jy,lethy, = 0.
3.1fr,, > Q, define Z,, := {L§”>, Lgn), e ,Lg)} C In
based, e.g., on (15). Otherwise, let Z,, := 7,,.
4. Compute ¢, , ¢ € Z,,by (22)—(24).
. Compute (3, by (25).
6. Update the coefficients by h, 5,41 := h,pn + uﬁnézb
forall . € Z,, (see (21)).

Zjejn hjm"‘@('un, Uj)

W

Fig.2. A geometric interpretation of Algorithm 2 for p = 1.

Platt’s criterion for the RKHS algorithm and the coherence
criterion for the proposed and parameter-space algorithms.
The Euclidean-distance criterion of QKLMS is equivalent
to the coherence criterion in the case of Gaussian kernel.
Throughout the simulations, the kernel parameter is set to
¢=2.0.

The step size is set to ;x = 0.1 for the proposed algorithm,
@ = 1.1 for the parameter-space and QKLMS algorithms,
and p = 0.5 for the RKHS algorithm.! The step size values
were chosen in such a way that a further decrease of step size
brings little improvements of steady-state performance. The
coherence threshold § > 0 is set to 6 = 0.7 and its equiva-
lent distance-threshold 0.4223 is used for QKLMS. The dis-
tance threshold §; > 0 and the error threshold > > 0 for the
Platt’s criterion are set respectively to 6; = 0.4 and 3 = 0.2.
The threshold values were chosen in such a way that a fur-
ther increase of dictionary size brings little improvements of
performance. We test 300 independent runs by generating the
noise randomly and the mean squared error (MSE) is com-
puted by averaging the instantaneous squared errors over the

IThe step size of the RKHS algorithm is larger than the other algorithms
because it updates the coefficients only when the new datum is added into
the dictionary, and thus the use of smaller step size yields extremely poor
performance.
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Fig. 3. MSE learning curves and dictionary-size evolutions.

300 runs. Figure 3 depicts the MSE learning curves and the
evolution of the dictionary size r,,. It is seen that the pro-
posed algorithm outperforms the RKHS and parameter-space
algorithms. In this specific case, moreover, we observe that
the proposed algorithm for ) = 1 exhibits (i) overall MSE
nearly identical to QKLMS and (ii) steady-state MSE slightly
higher than the fully-updating version ((Q = oo) despite its
reasonable complexity. The reason for the former observation
is that x(w,,u,) ~ 1 in (26) because the Gaussian kernel is
used and because the maximally coherent w, (which has the
minimum Euclidean distance to u.,) is chosen (see Section
4). The performance would be significantly different between
the proposed algorithm for ) = 1 and QKLMS if we em-
ploy another kernel and/or another criterion of designing Z,, .
The dictionary sizes for all the coherence-based algorithms
are exactly the same, and that for RKHS/Platt is also nearly
the same.

6. CONCLUSION

This paper presented a natural extension of the normalized
kernel least mean squares algorithm presented in [7, Chapter
2]. The proposed HYPASS algorithm selectively updates
a few coefficients at each iteration by projecting the cur-
rent filter onto the zero instantaneous-error hyperplane along
the selected affine subspace. Coherence is exploited for the
coefficients-to-be-updated selection as well as for the dic-
tionary construction. The proposed algorithm enjoys low
computational complexity. Numerical examples indicated
high potential of the proposed algorithm. The proposed algo-
rithm serves as a nice framework encompassing the Dodd’s
algorithm with a wider step-size-range and the normalized
version of the QKLMS algorithm. It will also serve as a
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basis in devising further advanced algorithms based on, for
instance, data reusing.

APPENDIX: PROOEFS OF (8) AND (19)

Lemma 1. Let M be a subspace of a real Hilbert space
(X, (-, )y),and Il :={z € X : (a,z), =0}, (0 #)a € X,
be a hyperplane. Then, there exists § € R such that

Pyn(z) = x4+ BPy(a), Vo e M. 27

Proof: Suppose that a € M*. In this case, we can show
that (27) holds for any § € R because M NIl = M and
Py(a) = 0. Suppose now that a ¢ M-=. In this case,
the existence of 3 satisfying  + B3Py (a) € M NIl is en-
sured by (a, Py(a)) = HPM(a)Hi( # 0. By the orthogonal
projection theorem [10], it is therefore sufficient to show that
Pyr(a) = a— Pyo(a) L M NII, which is verified by a L TT
and Pys1(a) L M. O
Lemma 1 verifies the equations (8) and (19) by translation.
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