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ABSTRACT 
 
Multiple single sound events of very different characteristics 
might coincide in a given space and time, thus composing 
complex audio scenes. In that context, defining signal 
features capable of effectively analyzing the holistic audio 
scenes is a challenging task. This paper introduces a set of 
features that consider the temporal, spectral and perceptual 
characteristics of the audio scene signals. Specifically, the 
features are obtained from the autocorrelation function of 
band-pass signals computed after applying a Mel filter bank. 
The so-called Narrow-Band Autocorrelation (NB-ACF) 
features are compared to state-of-the-art signal features on a 
corpus of 4 hours composed of 15 audio scenes. Regardless 
of the learning algorithm employed, the NB-ACF attains the 
highest averaged recognition rates: 2.3 % higher than Mel 
Frequency Cepstral Coefficients and 5.6 % higher than 
Discrete Wavelet Coefficients. 
 

Index Terms— Audio classification, feature extraction, 
autocorrelation function, environmental sound recognition, 
narrow-band signal analysis. 
 

1. INTRODUCTION 
 

Audio scene recognition aims at automatically 
identifying scenes or environments taking the audio as the 
main information source. We are talking about an emerging 
technology that might be applied in several fields. For 
instance, it may be used to enhance the robustness of speech 
processing algorithms in adverse noise conditions. In this 
context, the algorithm could be dynamically adapted to the 
given noise conditions by identifying the surrounding 
acoustic environment [1].  

Hearing aid devices can be also improved thanks to 
audio scene recognition technology. In that context, the 
technology would allow the automatic adaptation of the 
device to the characteristics of the recognized acoustic 
situation, i.e., volume and equalization filter variations in 
noisy environments, quiet environments, in presence of 
music, etc. [2]. 

In robotics, generally the visual data is employed to 
make the robot interact with the environment. However, in 
absence of light, the robot totally loses the input information 
source. In order to reduce the dependency with the visual 
data, the audio data may be considered, representing a 
complementary source of information that, in addition, 
requires a lower computational processing cost than the 
visual signals [3]. Closely related, in a multimedia domain, 
the identification of the acoustic context may allow the 
portable devices (e.g., mobile phones) changing their 
working settings without human intervention according to 
the surrounding environment [4], e.g., by turning off the 
volume in a library or switching to hands-free mode inside a 
car but not in similar situations such as inside a bus or a 
train.  

It should be noted that audio scenes, unlike speech or 
music, are unstructured audio signals (i.e., they lack of 
semantics). In addition, they might be composed of multiple 
environmental sound sources coinciding in space and time. 
Thus, robust signal features are needed in order to take into 
account all the details of such complex audio signals. An 
interesting comparison of signal features for audio context 
recognition was performed in [4]. They tested up to 11 
common signal features: Mel Frequency Cepstral 
Coefficients (MFCC), Sub-Band Energy Ratio, Linear 
Predictive Coefficients and other low-level parameters such 
as Spectral Centroid, Zero Crossing Rate (ZCR) or Short 
Time Energy (STE). Tested on a corpus composed of 24 
different soundscapes, the MFCC in conjunction with a 
Gaussian Mixture Model obtained the best performance.  

However, as stated in [3], MFCC (like other traditional 
spectral-based features) might fail in describing noise-like 
signals with strong temporal domain signatures, such as 
insects chirping or rain sound. In [5], the importance of the 
temporal aspects of the acoustic signal is also highlighted. 
Therefore, signal features that take into account both 
spectral and temporal information should be employed for 
addressing the problem at hand [5].  

This paper proposes a signal parameterization that, 
besides combining the spectro-temporal information needed 
to effectively analyze the complex audio scenes, also takes 
into account the human perception of sound. The proposed 
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parameterization is based on the autocorrelation function 
analysis of a set of narrow band-signals, a technique which 
has previously been used for sound mixture segregation [6], 
[7]. Unlike previous works, rather than using the whole 
autocorrelation, we propose a parameterization of this 
function using a set of perceptually motivated features. 

The rest of the paper is organized as follows. Section 2 
introduces the theory of the proposed signal features. 
Section 3 describes the implementation details, together 
with the machine learning algorithms employed to perform 
the audio scene classification. Section 4 presents the 
experimental evaluation carried out and Section 5 shows and 
discusses the obtained results. Finally, Section 6 draws up 
the conclusions and future work lines. 
 
2. NARROW-BAND AUTOCORRELATION SIGNAL 

FEATURES 
 
The proposed audio signal analysis first modifies the signal 
spectrum by means of an A-weighting filter in order to 
model the spectral response the human auditory system. 
Then, a bank of band-pass filters decomposes the broad-
band signal x(t) into a set of N narrow-band signals yj(t) (1):  
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where X(f) is the DFT of the broad-band signal, WA(f) is the 
A-weighting filter and Hj(f) is the band-pass filter centered 
at the fo,j frequency. Specifically, the filter bank is composed 
of N triangular filters Hj(f) that follow the Mel scale, which 
is a perceptual scale of pitches judged by human listeners 
[8]. A 1000 Hz tone, with a level 40dB above the listener’s 
threshold is defined as having a pitch of 1000 Mels. Below 
1000 Hz, the Mel scale is approximately linear, whereby 
above the 1000 Hz the Mel scale is non-linear and follows a 
logarithmic pattern. Then, the frequency used in the Mel 
band-pass filters fMel is given by [8]: 
 

 
(2) 

 
 
Next, the autocorrelation function (ACF) of each 

narrow-band signal yj(t) is computed. In addition, we define 
the band-normalized ACF of the signal filtered in the jth 
band as zj (3). The narrow-band ACF is normalized by the 
total energy of the weighted signal xA(t). This process allows 
removing the dependency of the narrow-band analysis with 
the energy of the signal frame.  
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Fig. 1. Parameters extracted from the signal’s 
Autocorrelation function. (a) Energy at the origin of the 
delay Φj(0), delay τ1,j and amplitude Φ1,j: of the first ACF 
peak. (b) Effective envelope duration of the normalized 
ACF τe,j. 
 

where, hereafter, T is the interval in which the signal is 
integrated, τ represents the time delay and xA(t) is the 
weighted signal before applying the Mel filter bank. 
 

At that point, the ACF is parameterized by extracting 
the four parameters proposed in [9] (see Fig.1). According 
to the author, the primary human auditory sensations (i.e., 
loudness, pitch, timbre and duration sensation) can be 
described by means of these four parameters. However, we 
have to redefine each parameter to cope with the narrow-
band signal analysis context, as it is described in the 
following paragraphs.  

 
• Φj(0): energy obtained from the ACF at the origin of the 

delay (4). It is related to the loudness or perceived sound 
pressure level of the sound signal at the jth band. 
 
 

(4)
   

• 
τ1,j: delay of the first peak that can be found in the 
normalized ACF. This parameter is related to the 
dominant frequency of the narrow-band signal

 
yj(t). It is 

computed as the delay of the largest Φj(τ), starting from 
the first zj zero crossing, denoted as TK (5).
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Fig. 2. Block diagram of the computation of the NB ACF features. 

 

 
 
 

• Φ1,j: amplitude of the first peak (see (6)). It represents 
the strength of the dominant frequency τ1,j. High values 
of Φ1,j are attributed to high-pitched signals, whereby 
low values of Φ1,j are attributed to low-pitched signals. 

 
(6) 

 

• τe,j: effective duration of the envelope of the normalized 
ACF. It is defined by the time that takes the 10log(zj(τ)) 
to decay 10 dB from its maximum value, and represents 
a repetitive feature within the sound signal. Thus, it is 
related to the reverberation of the signal yj(t). The 
algorithm to calculate τe,j performs a linear regression of 
the major peaks found in 10log(zj(τ)) and computes the 
equivalent decay time. 
 
Finally, the parameters from the N narrow-band signals 

are merged into a unique signal feature vector (7). 
 

(7) 
 
 

3. AUDIO SCENCE RECOGNITION SYSTEM 
 
As a first step, the audio signal is framed employing a 
hamming window of 500 ms with 100 ms step, following 
the recommendation of [10] for the ACF signal analysis of 
environmental sounds. Note that the window used is larger 
than the typical length in spectral analysis [4], since the 
computation of ACF parameters requires a higher number of 

signal samples in order to achieve good resolution. Then, 
after applying an A-weighting filter, the framed signal is 
passed through a Mel filter bank that splits the signal into 
N=48 different narrow band signals. This value is obtained 
after adapting the Mel filter bank typically used in speech 
[11] to environmental sound analysis, whose bandwidth of 
interest is wider (in this work, it was set from 20Hz to 10 
KHz). The ACF and the four parameters described in 
Section 2 are computed on each narrow band signal. 
Subsequently, Principal Component Analysis (PCA) is 
applied in order to reduce the dimensionality of the signal 
feature vector thus compacting the information [12]. 

Two different machine learning techniques have been 
selected to carry out the audio scene learning process: the K-
Nearest Neighbor (KNN) and the Support Vector Machine 
(SVM). In this work, the SVM used a Gaussian radial basis 
function kernel, as in [13], and followed a traditional one 
versus all classification scheme. Both the number of 
neighbors from the KNN (K=3) and the sigma and C 
values from the SVM (1.3 and 1, respectively) were 
empirically selected so as to maximize the classification 
accuracy. 
 

4. EXPERIMENTAL EVALUATION 
 
4.1. Sound database 
 
The corpus is composed of both self-recorded audio samples 
and audio samples extracted from a common sound library 
[14]. A total of 15 audio scenes from indoor and outdoor 
environments divided into five categories were considered 
(see Table 1). Each scene is represented by a set of 
minimum 150 samples and maximum of 300 samples, 
lasting 4s each one. In turn, each set was recorded in several 
locations (between 3 and 8, depending on the scene), so as 
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to guarantee certain data variability. The total corpus size is 
3500 samples, which is equivalent to nearly 4 hours of audio 
data. 
 

 
Table 1. Audio scene corpus employed in the experiments. 
 
4.2. Experimental setup 
 
The proposed features are compared against other state-of-
the-art signal parameterization techniques, covering time-
domain (a combination of STE and ZCR), frequency-
domain (MFCC) and time-frequency domain (Discrete 
Wavelet Coefficients (DWC)) signal features. The 4s audio 
sample was windowed with hamming windows of 30 ms 
long and an overlapping of 15 ms, as in [4]. In the case of 
MFCC, a vector of 13 coefficients (including the 0th 
Cepstrum) was taken, whereby the DWC employed a 
“Daubechies” mother function with four vanishing moments 
[13]. The signal features (i.e. either MFCC, DWC or 
STE+ZCR) from all the 30ms frames contained in a 4s long 
sample are merged into a unique vector. Subsequently, PCA 
is applied by selecting the number of components that 
maximize the recognition performance of each signal 
feature (between 6 and 18, depending on the signal feature 
and on the machine learning technique)  

The experiments consist in carrying out the 
classification of the corpus audio scene samples (one 
decision is taken for the whole 4s samples) following a 4-
fold cross validation scheme [3]. Experiments are 
independently run considering the two machine learning 
techniques: KNN and SVM. Finally, a class-based analysis 
is carried out in order to analyze the classification 
performance achieved in every audio scene by the different 
signal features of the comparison. 
 

5. RESULTS 
 
5.1. General classification 
 

The averaged classification rates attained when combining 
each signal feature with each machine learning technique 
are shown in Table 2. So far, the combination of STE and 
ZCR yield very poor accuracies, showing classification rates 
lower than 50% in combination with both classifiers. When 
employing the KNN algorithm, MFCC and DWC yield 
similar performances, whereas in combination with SVM, 
the MFCC attains an averaged classification rate 5.4 points 
higher than DWC. Nevertheless, both are outperformed by 
the proposed NB-ACF, which yields a classification rate of 
the 90% and a 91% when combined with the KNN and 
SVM, respectively. 
 

Feature KNN SVM 

NB-ACF 90.0 ± 0.9 91.0 ± 1.2
MFCC 87.4 ± 1.1 89.0 ± 1.3 
DWC 86.2 ± 1.0 83.6 ± 1.1 

STE+ZCR 47.5 ± 1.7 41.4 ± 3.0 
 

Table 2. Mean and standard deviation (in %) of the 
classification rates attained by the combination of each 
signal feature with each machine learning algorithm.  
 

 
Fig. 3. Most frequent confusions obtained by the KNN 
classifier in combination with the DWC, MFCC and NB-
ACF signal features. 
 

 
Fig. 4. Most frequent confusions obtained by the SVM 
classifier in combination with the DWC, MFCC and NB-
ACF signal features. 

Category Name Samples 

Outdoors-
Natural 

Seaside 251 
Countryside 150 

Outdoors-City 
Traffic 253 

Pedestrian 227 
Park 200 

Indoor-leisure 
Library 173 

Restaurant 194 
Stadium 296 

Indoor-work 
environment 

Classroom 200 
Office 288 

Factory 250 

Indoor-means 
of transport 

Station 198 
Inside car 300 
Inside bus 284 
Inside train 236 

TOTAL 3500 
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5.2. Class-based analysis 
 

The classification rate on each audio scene has been 
calculated in order to come up with a detailed comparison of 
the accuracy obtained when using DWC, MFCC and the 
proposed NB-ACF signal features (STE+ZCR are not 
included given the poor performances observed in Table 3). 
The comparison is based on the calculation of the confusion 
matrix when employing each signal feature in combination  
with KNN or SVM classifier. Due to space restrictions, the 
information of the confusion matrix is summarized by 
taking the three pairs of classes that showed the highest 
confusion rates for every signal feature. 

As it can be observed from Fig 3, when employing the 
KNN classifier, the NB-ACF reduces significantly the 
confusion rates in the most critical cases (those that showed 
larger misclassifications when employing DWC and MFCC,  
i.e. office-library and office-classroom). Indeed, all the 
confusion rates yielded by NB-ACF remain below the 10%. 
It should also be noted the dramatic reduction of the 
confusions between inside train and classroom, and between 
inside car and inside bus. 

Likewise, in combination with the SVM classifier, the 
highest misclassifications shown by NB-ACF are 
significantly reduced, remaining below the 8% (see Fig. 4). 
Specifically, the confusions between classroom and both 
office and seaside classes decreased nearly a 9% when 
employing NB-ACF instead of MFCC. Also the major 
misclassifications obtained when using DWC (i.e., office-
library, library-office and bar-station) showed a significant 
reduction (6.5% to 9%) when using NB-ACF.  

The superiority of NB-ACF in front of both DWC and 
MFCC turns out to be especially important in audio scenes 
such as office, library or classroom. These audio scenes 
usually present a high randomness on single sound events 
occurrence (e.g., people talking, door closing, phone 
ringing, etc.) and they are more difficult to recognize, as 
already noticed in previous works [12]. 

 
6. CONCLUSIONS 

 
This paper has introduced a set of signal features for the 
classification of audio scenes that take into account their 
temporal, spectral and perceptual characteristics by 
analyzing the autocorrelation function of narrow-band 
signals (NB-ACF). In the experiments the NB-ACF 
descriptors have been compared to representative time 
domain (STE+ZCR), frequency domain (MFCC) and time-
frequency domain (DWC) signal features. The classification 
rates attained by the STE+ZCR have shown that time-
domain characteristics of the audio signals are not sufficient 
by themselves for conducting audio scene classification, 
whereby the spectral-domain characteristics (in this work, 
MFCC) attained a good performance. However, among all 
the tested signal features, the proposed NB-ACF, which is a 
spectro-temporal feature with perceptual basis, yielded the 

best classification rates for the corpus at hand.  
The detailed analysis of the confusion matrices shows a 

reduction of misclassifications when employing NB-ACF, 
effect that is particularly interesting on those audio scenes 
where changes of sound events over time are more 
pronounced, such as office, library or classroom. Our future 
work will be focused on extending the corpus and testing the 
proposed features in different locations, as well as adapting 
the technique to real time applications. 
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