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ABSTRACT 
 
Sound can deliver highly informative data about the 
environment, which can be of particular interest for home-
teleassistance and surveillance purposes. In the sound event 
recognition process, the signal parameterisation is a crucial 
aspect. In this work, we propose Gammatone-Wavelet 
features (GTW) by merging Wavelet analysis, which is 
well-suited to represent the characteristics of surveillance-
related sounds, and Gammatone functions, which model the 
human auditory system. An experimental evaluation that 
consists of classifying a set of surveillance-related sounds 
employing Support Vector Machines has been conducted at 
different SNR conditions. When compared to typical 
Wavelet analysis with Daubechies mother function (DWC), 
the GTW features show superior classification accuracy 
both in noiseless conditions and noisy conditions for almost 
any SNR level. Finally, it is observed that the combination 
of DWC and GTW yields the highest classification 
accuracies.  
 

Index Terms— Gammatone function, Wavelet analysis, 
audio classification, feature extraction, audio-based 
surveillance, Ambient Assisted Living. 
 

1. INTRODUCTION 
 
Traditionally, surveillance systems have been based on 
video information. However, significant improvements may 
be achieved by adding audio as input information [1], 
providing several advantages since they i) work in absence 
of light, ii) need cheaper sensors, iii) fix the image 
limitations associated to the blind spots, iv) preserve the 
personal privacy (no image is stored from people), v) enable 
simple alarm triggering for the emergency or police 
services, etc. [2]. Audio-based surveillance systems may be 
used for security purposes in many contexts, such as offices 
[1], metro stations [3] or home environments [4], [5]. In 
addition, the technology might be applied to Ambient 
Assisted Living, so as to design smart homes that maintain 
safety, comfort and well-being of its inhabitants [6]. 

In the related literature, several works have focused on 
different aspects of audio signal parameterization and 
classification. However, there is still room for improvement 
given the novelty of the research field. This work especially 
focuses on the former, since it is found to be of paramount 
importance when it comes to recognize the occurring sound 
events [3].  

In this paper, we propose linking two different concepts 
to come up with a signal parameterization that effectively 
describes surveillance-related sound events. The first one is 
Wavelet analysis, which is a technique commonly used in 
the field given the characteristics of the surveillance-related 
sound signals [4]-[6]. The second one is Gammatone 
filtering, which has been used to model the human auditory 
response [7].  In this work, we put forward a Wavelet 
analysis employing Gammatone mother functions, which 
are previously adapted to satisfy the Wavelet admissibility 
conditions. With regards to the machine learning technique 
asked to perform the audio classification, we choose 
Support Vector Machines, given its proved performance not 
only in general pattern recognition problems but also in 
audio classification tasks [4], [8]. 

Finally, it should be noticed that real-world applications 
require sound recognition systems robust to noise [4]. 
Therefore, in the experiments we paid especial attention to 
test the proposed system under different adverse noise 
(SNR) conditions. 

The remainder of this paper is organized as follows. 
Section 2 reviews the related work. Section 3 presents the 
proposed Wavelet analysis employing auditory inspired 
Gammatone functions. Section 4 and Section 5 present the 
experimental setup and the obtained results. Finally, Section 
6 draws up the conclusions and the future work. 
 

2. RELATED WORK 
 
Up to our knowledge, one of the seminal approaches to 
perform audio recognition for surveillance applications was 
conducted by Cowling and Sitte less than 10 years ago [2]. 
That work compiled several signal features and machine 
learning techniques previously employed in related research 
fields. The experiments, consisting in the classification of 
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several surveillance-related sounds (such as footsteps, wood 
snapping or glass breaking), showed that both Mel 
Frequency Cepstral Coefficients and Continuous Wavelet 
Transform yielded the highest accuracy in combination with 
Dynamic Time Warping for classification. 

Wavelet techniques have been commonly employed in 
the following works. In [6], Discrete Wavelet Transform 
was used to detect salient audio events in noisy 
environments for medical surveillance applications. The 
authors argued the good adaptation of the technique to 
signals with time-localized features such as door slaps or 
footstep sounds. The advantage of multi-resolution Wavelet 
techniques for sound classification in noisy-environments 
was also discussed in [5]. The signal representation 
introducing both time and frequency location improved the 
recognition of time varying sounds as water or voices. 
Unlike the aforementioned works, in [4] Discrete Wavelet 
Coefficients were merged with other temporal and 
frequency-based signal features into a single feature vector. 
This combined signal parameterization showed very good 
performance in classifying sounds for surveillance and 
security applications with Support Vector Machines. 

There are two characteristics that define the Wavelet 
analysis: the irregularity and asymmetry of the Wavelet 
mother functions and the variable length of windows to 
better adapt to the frequency components being analysed. 
These characteristics make the Wavelet analysis suitable for 
representing surveillance-related sound events, which 
frequently present a short duration and impulsive 
characteristics (e.g., gunshots, footsteps). Previous works 
employed different Wavelet mother functions: Morlet [2], 
Coiflet [5], or more typically, Daubechies [2], [4]-[6].  

In this work, we propose to use Gammatone mother 
functions instead, which are well known for their 
application to human auditory modelling (specifically to 
model the cochlear frequency response). They are 
asymmetric and have a variable duration that depends on 
their central frequency. Thus, filtering a signal with a 
Gammatone filter bank is similar to a Wavelet transform in 
the sense that all basis functions are scaled versions of the 
mother function at the first central frequency [9]. The 
connection between both techniques has already been 
mentioned in the literature [9], [10], being used for acoustic 
source segregation in [11]. 

 
3. AUDITORY-BASED WAVELET FEATURES 

 
The Gammatone filter takes its name from the impulse 
response g(t,B) (see Fig. 1), which is the product of a 
Gamma distribution function and a sinusoidal tone centred 
at the fc frequency, being computed as [7]:  

    (1)
 

where K is the amplitude factor; n is the filter order; fc is the 
central frequency in Hertz; φ is the phase shift; and B 
represents the duration of the impulse response.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Shifted Gammatone mother functions ψi,m(t,B) 
used to decompose the windowed signal y(t). Mi is the times 
ψi,(t,B) is shifted to cover the whole signal frame. The 
dashed line represents ψ1(t,B) before substracting the D.C. 
component (see (4)). 
 

A family of admissible Wavelets must satisfy the 
following two conditions so as to accomplish Parseval’s 
equation and ensure the existence of its inverse [10]: 
 

    (2) 
 

                                   (3) 
 
where ψ(t,B) states for the Wavelet mother function. Our 
Wavelet candidate function g(t,B) satisfies (2). Equation (3) 
implies that the function must have zero mean, which is 
satisfied by g(t,B) except for very low B (see Fig. 1). Thus, 
in order to satisfy (3), the mean value of the signal (D.C. 
component) is subtracted from g(t,B) by multiplying the 
function per an exponential function (similarly as in [12]),  
thus yielding an admissible family of Wavelet mother 
functions ψ(t,B): 
  

(4) 
 
 

where ξ a factor empirically set to cancel the D.C. 
component of g(t,B).  

The scaling of the proposed Gammatone Wavelet 
function is controlled by B, which is related to the 
Equivalent Rectangular Bandwidth (ERB), a psychoacoustic 
measure of the auditory filter width at each point along the 
cochlea [7]. Following Glasberg&Moore’s model, the 
bandwidth B is calculated as [13]:
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According to (4), B fixes the length of ψ(t,B) and the 
approximation detail: the narrower, the longer the window, 
and thus, the coarser approximation.  

The i-th scaled versions of the Wavelet mother function 
ψi, (t,B) are obtained by varying fc from (5). The central 
frequency fci from each ψi (t,B) is computed as: 

 (6) 
 
 

(7) 
 

where fhigh is the highest frequency considered; step is the 
logarithmic gap between consecutive filters; and N is the 
number of GT filters [13].

 
 In order to incorporate the Wavelet translation, let us 

define the shifted Gammatone mother functions ψi,,m (t,B) as: 
 

(8) 
 
where Li is the length of ψi (t,B) and Mi is: 

 
(9) 

 

 The scalar product of the windowed input signal (with 
a Hamming window) y(t)=x(t)w(t) with the shifted 
Gammatone mother functions ψi,m (t,B) yields the Wavelet 
time-frequency representation γi,m (t,B): 
 

 (10) 
 

Since large values of B result into short ψi (t,B), the 
Gammatone mother function needs to be shifted as much as 
necessary to cover the windowed signal y(t). Thus, Mi grows 
with i and γi ,m(τ,B) contains a larger number of components 
for high i, indirectly giving an extra weight to the high 
frequencies. Given that low frequencies are also important 
for the recognition of environmental sounds [14], we avoid 
this bias by computing the sum of the energy of the γi ,m(τ,B) 
components for a certain i: 
 

        (11) 
 

Finally, the Gammatone Wavelet (GTW) feature vector 
is obtained as: 

 

(12) 
 

5. EXPERIMENTAL EVALUATION 
 
In order to empirically evaluate the performance of the 
proposed Wavelet analysis with Gammatone functions 
(hereafter GT-Wavelet features), a corpus of typical sounds 
from surveillance applications is used. Similarly as in [1]-
[4], the specific sound classes are: dog barks (90), screams 

(70), voices (80), gunshots (85), footsteps (90) and thunders 
(75). The sound samples were taken from common sound 
libraries [16], [17] and present a variable duration (between 
0.3 seconds and 4 seconds, depending on the file). All 
signals were normalized to 16 bits resolution and sampled at 
22050 Hz. 

The proposed GT-Wavelet feature vector is computed 
on frames of 45 ms length (fixed by the GT function with 
the largest time duration), with a 50% of overlap. As a 
baseline, we consider a typical Wavelet decomposition 
using the Daubechies mother function, with 4 vanishing 
moments and 6 decomposition levels, as in [4]. Hereafter, 
we will refer to this baseline parameterisation as Discrete 
Wavelet Coefficients (DWC). It should also be noted that 
two versions of the proposed GT-Wavelet features were 
computed: the first one using 7 GT functions (GTW-7), so 
as to make it compliant with the baseline (same amount of 
coefficients); and the second one employing 16 GT 
functions (GTW-16), thus covering the entire spectrum 
according to (7).  

As a consequence of having sound samples with 
variable duration, the sound feature patterns result in 
variable dimension. However, a procedure is needed to fix 
the feature pattern dimensionality (since the classifiers 
generally need fixed length input data) while keeping the 
time evolution information of the sound signals. Similarly as 
in [4], each feature vector was divided into three portions of 
equal length. After computing one mean vector per portion, 
these three vectors are merged into the final feature vector 
used by the classifier 

Support Vector Machines (SVM) perform the 
classification of the parameterised audio signals. The basis 
of the SVM is mapping the input samples into a high 
dimensional space and finding the hyperplane that optimally 
separates the two classes [15]. In this work, we employ a 
SVM with a Radial Basis Function kernel, given the good 
performance attained in [4] and [8]. To adapt the binary 
SVM to multi-class classification, we follow a one vs. all 
scheme, given the lower computational cost when compared 
to one vs. one approach [8]. 

 

Three experiments have been conducted. In the first 
one, the feature performance is evaluated in noiseless 
conditions, whereas in the second one, it is tested in noisy 
environments. The third experiment analyzes the 
performance of all the possible feature combinations. In the 
three experiments, a 10-fold cross validation scheme is 
employed to distribute the corpus data between training and 
test sets. The obtained accuracy is computed as the averaged 
percentage of correctly classified samples. 
 
6. RESULTS 
 
6.1. Classification in noiseless environment 
 
The first experiment considers the different audio events in 
the ideal case without interfering noise. In these conditions, 
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the accuracy achieved by the system is really high, with 
classification rates above 90% regardless of the audio 
feature employed (see Fig. 2). Specifically, the GTW-16 
yields the highest averaged accuracy (96.2%), closely 
followed by the GTW-7 (95.3%) and in third position, the 
DWC (91.6%). Hence, both versions of the Gammatone 
Wavelet features outperform the DWC in noiseless 
conditions by 4.6% and 3.7% in average, respectively. 

The confusion matrices obtained when using the 
baseline DWC and the proposed GTW-16 features are 
shown in Table 1 and Table 2, respectively. The most 
relevant improvements yielded by GTW-16 with respect to 
DWC are observed in the reduction of misclassifications 
between footsteps and thunder (10.8%), dog barks and 
scream (8%) and gunshot and thunder (6.2%).  

 

Figure 2. Boxplot of the classification rate (%) using DWC, 
GTW-7 and GTW-16 features. 

 
Dog  Scream Voices Gunshot Footsteps Thunder

Dog bark 98.9 14 1.2 
Scream 1.1 84 1.5 
Voices 98.8 2.4 1.5 
Gunshot 2 1.3 83.5 7.7 
Footsteps 2.4 97.8 15.4 
Thunder 4.7 2.2 66.2 

Table 1. Confusion matrix using DWC features. Rows depict 
the system outputs and columns the targets. 

 
Dog Scream Voices Gunshot Footsteps Thunder

Dog bark 95.6 6 1.2 1.5 
Scream 2.2 92 
Voices 1.1 100 3.1 
Gunshot 1.1 2 91.8 1.5 
Footsteps 100 4.6 
Thunder 1.2 81.5 

Table 2. Confusion matrix using GTW-16 features. Rows 
depict the system outputs and columns the targets. 
 
6.2. Classification in noisy environment 
 
To recreate noisy conditions, the audio samples were 
contaminated with city background noise recordings at 
different SNR levels, ranging from 10dB to -20dB. 

As shown in Fig. 3, the performance of the features is 
notably affected by the presence of noise, finding three 
differentiated regions. Firstly, for high and intermediate 
SNR levels (0 dB or higher), the best performing feature is 
GTW-16. The averaged classification rates are 3.2% and 
5.3% higher than those yielded by DWC and GTW-7, 
respectively. Secondly, for low SNR levels (-5 dB to -10 
dB), the differences between the three features are narrower, 
showing DWC and GTW-16 quite similar performances. 
Finally, for extremely low SNR levels (below -10 dB), the 
previously observed behaviour dramatically changes and 
GTW-7 yields the highest accuracies, i.e., 8.8% and 6.6% 
superior to DWC and GTW-16, respectively. Nevertheless, 
GTW-16 yields on average the best performance across the 
SNR sweep among the three tested features, with a 62.3%, 
followed by GTW-7 (61.5%) and DWC (60.5%). 

 
Figure 3. Averaged classification rate (%) using DWC, 
GTW-7 and GTW-16 features at different SNR levels. 

 
6.3. Feature combination 
 
 The last experiment builds feature vectors from different 
combinations of the three signal features.  Audio 
classification tasks were repeated both in noiseless and 
noisy conditions, following the same scheme of the previous 
experiments. Considering the averaged classification rate at 
all SNR conditions (see Table 3), the highest percentage is 
yielded by the feature vector merging all three features 
(68.65%), followed by the combination of DWC+GTW16 
(68.36%). The results suggest that the more features the 
greater the information about the signal and hence, the 
higher performance obtained. Thus, the feature combination 
provides an advantage respect to using any single feature 
when conducting sound classification for surveillance 
applications. It is also noticeable that combining DWC with 
any of the GTW versions yields a better performance than 
combining both GTW versions, which suggests that there is 
a positive complementation between the baseline (DWC) 
and the proposed analysis technique (GTW).  

If we rather take a look on the results at each SNR level 
(see Fig.4), for SNR higher than -10dB (leftmost part of Fig. 
4), the feature vector combination of the 3 features yields 
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the best performance. However, this feature vector is 
outperformed at extremely low SNR levels by the winner 
single feature vector at those categories i.e., GTW-7 
(rightmost part of Fig. 4). These results suggest that the 
simplest version of the Gammatone Wavelet analysis is less 
sensitive to extremely noisy conditions, although it is worth 
noting the poor classification results obtained in this 
context. This effect could be due to the coarser representation 
provided by GTW-7 when compared to that from GTW-16, 
being less affected by the undesired background noise. 

 
Feature Averaged accuracy 

GTW16 (best single feature) 66.52% 
GTW16 + GTW17 67.27% 
DWC + GTW7 67.47% 
DWC + GTW16 68.36% 
DWC + GTW16 + GTW7 68.64% 

Table 3. Averaged accuracy yielded by the different feature 
vectors. The accuracy value is obtained by averaging the 
classification rates at every SNR level. 
 

 

Fig 4. Averaged classification rates (%) obtained by feature 
combinations at different SNR levels. 
 

7. CONCLUSIONS 
 
This paper has proposed a parameterization technique to 
effectively representing the characteristics of audio signals 
for audio surveillance applications. The proposal is based on 
the fusion of Wavelet analysis with Gammatone filters. The 
results show that the proposed parameterization technique 
outperforms the typical Discrete Wavelet analysis with 
Daubechies mother functions, both at noiseless and noisy 
conditions, besides showing equivalent performance in the 
range of -5dB to -10dB SNR. The combination of both 
parameterisation techniques seems to be a better solution for 
the corpus at hand, yielding the highest classification rates at 
reasonable SNR levels. Future work lines will be addressed 
to test the proposed system in real environments, extending 
the range of sound events and considering non-stationary 
interfering background noise. 
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