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ABSTRACT

The prediction error method (PEM) has been successfully applied
in double-talk-robust acoustic echo cancellation (AEC) as well as
in acoustic feedback cancellation (AFC). The main idea in both
applications basically consists in decorrelating the adaptive filter
input and error signals. This is done by whitening these signals
with the inverse of a near-end signal model before the filter adap-
tation. The choice of the near-end model greatly affects the per-
formance and complexity of the resulting AFC/AEC algorithms,
oftentimes turning the algorithm impractical for real-world real-
time applications. This paper proposes the use of discrete cosine
transform (DCT), in conjunction with a simple near-end signal
model, to boost the performance of PEM-based algorithms both
in double-talk-robust AEC and AFC while only marginally in-
creasing the computational complexity.

Index Terms— Prediction error method, acoustic echo can-
cellation, double-talk, acoustic feedback cancellation, transform
domain.

1. INTRODUCTION

Acoustic feedback and acoustic echo are two well-known prob-
lems in speech communication applications, which are caused by
the acoustic coupling between a loudspeaker and a microphone.
On the one hand, acoustic feedback limits the maximum amplifi-
cation that can be applied, e.g., in a hearing aid before howling,
due to instability, appears [1],[2]. In many cases this maximum
amplification is too small to compensate for the hearing loss,
which makes acoustic feedback cancellation (AFC) algorithms an
important component in hearing aids. On the other hand, acoustic
echo cancellation (AEC) is widely used in mobile and hands-free
telephony [3] where the existence of echoes degrades the intel-
ligibility and listening comfort. The goal of AFC and AEC is
essentially to identify a model for the feedback or echo path and
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to estimate the feedback or echo signal. The feedback or echo es-
timate is then subtracted from the microphone signal. These two
applications in principle look the same and share many common
characteristics, however they face different essential problems.

The main problem in AFC is the correlation, which is caused
by the closed signal loop, that exists between the near-end sig-
nal and the loudspeaker signal. This correlation problem causes
standard adaptive filtering algorithms to converge to a biased
solution[1]. One of the solutions for this problem is therefore
to reduce the correlation between the near-end signal and the
loudspeaker signal. In AEC applications, on the other hand, the
near-end signal is considered to be uncorrelated with the loud-
speaker signal which is an approximation of reality. Except when
the near-end signal is a white noise signal, the least-squares es-
timator is suboptimal which is typically the case in AEC. More-
over, practical AEC implementations rely on computationally
simple stochastic gradient algorithms (e.g., NLMS). Therefore,
it turns out that the presence of a near-end signal, in a so called
double-talk (DT) scenario, will affect the adaptation in the AEC
context by making the filter coefficients converge slowly and
even diverge.

Reducing the bias in the feedback path model identification
can be achieved by prefiltering the loudspeaker and microphone
signals with the inverse near-end signal model before the adap-
tive filter [1],[2] using the prediction error method (PEM) [4].
The same concept has been successfully applied in [5] in order
to achieve a DT-robust AEC by using knowledge of the near-
end signal characteristics. In this way, the convergence properties
of the echo path identification algorithm can be improved, even
without the use of active DT detectors. For near-end speech sig-
nals, an auto-regressive (AR) model is commonly used [1] as it
is indeed a very simple model. However, this single model fails
to remove the speech periodicity, which causes the loudspeaker
signal still to be correlated with the near-end signal during voiced
speech. More complex models where different cascades of near-
end signal models are used to remove the coloring and periodicity
in voiced as well as unvoiced speech segments, e.g., the constraint
pole zero linear prediction (CPZLP) [6] or the sinusoidal near-
end model [2] have been proposed in the literature. However the
overall AFC/AEC complexity increases dramatically.

In this paper the use of the discrete cosine transform (DCT) is
proposed to boost the performance of the PEM adaptive filtering
algorithms using row operations (PEM-AFROW) both in AFC
and AEC while using a low–order AR near-end signal model.
The idea of using a unitary orthogonal transform, like the DCT, of
the adaptive filter signal is not new. Originally it was proposed to
increase convergence rates in stochastic gradient algorithms such
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as the least mean squares (LMS) algorithm [3], [7]. In this pa-
per, however, the intention is to decorrelate the adaptive filter sig-
nal to achieve better double-talk robustness in AEC and achieve
greater amplification rates, i.e., maximum stable gain (MSG), in
AFC. The latter case was implicitly mentioned in [8]. The in-
tention there was to have an efficient implementation of PEM-
AFROW using the frequency domain adaptive filtering (FDAF).
Some comments were given on complexity reduction but very lit-
tle was said on performance increase. In [8], a discrete Fourier
transform (DFT)-based FDAF was employed but, according to
[7], the DFT is not the optimum transform for speech applica-
tions. The transformation that is closer to the optimal Karhunen-
Loeve Transform (KLT) forlow-passsignals, like speech sig-
nals, is the DCT [7]. Therefore the contribution of the paper is
to use DCT-based transform domain (TD) PEM-AFROW (TD-
PEM-AFROW) in speech applications to improve DT robustness
in AEC and increase MSG in AFC.

The paper is organized as follows: Section 2 explains the
signal model, algorithm and transformation, and it is shown how
these are applied in AEC and AFC. In Section 3, simulation re-
sults are given and finally Section 4 concludes the paper.

2. TD-PEM-AFROW FOR AFC AND AEC

The acoustic feedback and echo cancellation concepts are shown
in Fig. 1. The microphone signal is given as,

y(t) = x(t) + v(t) (1)

with

x(t) = F (q, t)u(t) (2)

v(t) = H(q, t)w(t) =
1

A(q, t)
w(t) (3)

whereq denotes the time shift operator andt is the discrete time
variable,v(t) is the near-end signal,x(t) is the feedback or echo
signal. H(q, t) is the near-end signal model andF (q, t) is the
feedback or echo path between the loudspeaker and the micro-
phone of ordernF . The feedback or echo canceler produces an
estimate of the feedback or echo signalx(t) which is then sub-
tracted from the microphone signaly(t). In the case of AFC the
forward pathG(q, t) maps the microphone signal to the loud-
speaker signalu(t). In the case of AEC the echo-free error sig-
nal e(t) is sent to the far-end and the loudspeaker signalu(t) ar-
rives from the far-end. In most applications the microphone sig-
nal is also corrupted by background noisen(t) such thaty(t) =
x(t) + v(t) + n(t).

The near-end signal can be modeled as an auto-regressive
(AR) process with coefficientsA(q, t) of ordernA excited with a
white noise signalw(t) of time-dependent variance. These coeffi-
cients are calculated by means of linear prediction techniques and
stored to form a filter (e.g.,L(q, t)). Fig. 2 represents the concept
of prefiltering the microphone and loudspeaker signal with the in-
verse model of the near-end speech signal. The signal model with
(2) and (3) often fails to make the AFC/AEC completely remove
the acoustic feedback or echo component in the microphone sig-
nal as will be shown in the simulations part. There are basically
two reasons for this, one is the presence of noise and the sec-
ond is that the model ordernA may be too low. This means that
the adaptive filter does not only predict and cancel the feedback

Fig. 1. AFC or AEC general set-up

Fig. 2. AFC set-up with prefiltering of the loudspeaker and microphone
signal

component in the microphone signal, but also part of the near-
end signal, which results in a distorted feedback or echo com-
pensated signal, smaller MSG in AFC and poor DT robustness in
AEC. To further solve the problem of decorrelation using a mini-
mal computational complexity increase, a DCT-based orthogonal
transformation is proposed.

2.1. Transform Domain

The chosen orthonormal transformation is the discrete cosine
transform (DCT) as it approaches the optimal KLT for speech
signals [7]. ThenF × nF DCT matrix coefficientsT[kl] are
given as

T[k, l] =























1√
nF

k = 1 and l = 1, ..., nF

(

2

nF

)1/2

cos
π(2l + 1)k

2nF

k = 2, ..., nF and l = 1, ..., nF

(4)

The complete algorithm description using TD-PEM-AFROW for
AEC is given in Algorithm 1. An equivalent AFC algorithm
would be readily obtained by mapping the microphone signal
back to the loudspeaker signal instead of transmitting it to the
far–end as in the AEC case.
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Algorithm 1: TD-PEM-AFROW for AEC

for t = 1, 2, ... do
j = mod(t,P);
if j=0 then

f(t− 1) = T−1 f̂(t− 1);
ȳ(t) = Ū(t)f(t− 1)
d(t) = y(t)− ȳ(t);
[a, δ2] = Levinson-Durbin(d, nA);
uL(t) = U(t)a;

else
uL[2 : nF ](t)← uL[1 : nF − 1](t);
uL[1](t) = uT

nA
(t)a;

end if
s(t) = TuL(t);
yL(t) = yT

nA
(t)a;

ȳL(t) = sT (t)f̂(t− 1);
eL(t) = yL(t)− ȳL(t);

f̂(t) = f̂(t− 1) + µ
s(t)

σ
2 + δ2 + λ

eL(t);

e(t) = y(t)− sT (t)f̂(t);
end for

The vectors in Algorithm 1 are defined as

u(t) = [u(t), ..., u(t− nF + 1)]T , (5)

y(t) = [y(t), ..., y(t−M + 1)]T , (6)

unA
(t) = [u(t), ..., u(t− nA + 1)]T , (7)

ynA
(t) = [y(t), ..., y(t− nA + 1)]T (8)

The adaptive filter output (i.e., the feedback or echo estimate)
may be expressed in vector notation asŷL(t) = uT

L(t)f̂(t),
where thenF × 1 vector f̂(t) contains the adaptive filter coef-
ficients at timet anduL(t) = [uL(t), ..., uL(t − nF + 1)]T is
the input signal to the adaptive filter. The orthogonal matrixT

transforms the adaptive filter input signal to the DCT domain as

s(t) = TuL(t) (9)

The matrices are defined as

U(t) =







u(t) . . . u(t− nA + 1)
...

. . .
...

u(t− nF + 1) . . . u(t− nF − nA + 2)







(nF×nA)

(10)
and

Ū(t) =







u(t) . . . u(t− nF + 1)
...

. . .
...

u(t−M + 1) . . . u(t−M + 2− nF )







(M×nF )

(11)
In the PEM-AFROW algorithm, the AR coefficientsa and the
varianceδ2 are calculated using the Levinson−Durbin recursion.
P represents the frequency, in number of samples, at which this
calculation is performed andM is the linear prediction window
length. In Algorithm 1,σ2 is annF ×nF diagonal matrix whose
elements are the power estimates of the elements ins(t) (i.e.,
s[k](t) for k = 1, ..., nF ) such that

σ
2[k](t) = (1− α)σ2[k](t− 1) + αs

2[k](t), (12)

α is a small factor chosen in the range0 < α ≤ 0.1, λ is also a
small constant to avoid division by zero andδ2 accounts for the
energy variations in the near-end excitation signal.

The elements of the transformed input vector,s(t) , appear
to be approximately decorrelated with one another [3] [7]. More-
over, an appropriate power normalization (i.e., withσ2) can
convert the input autocorrelation matrix to a normalized matrix
whose eigenvalue spread will be much smaller than that of the
original input signal, thereby improving the convergence behav-
ior of stochastic gradient algorithms (e.g., LMS) in the transform
domain. Although improving the convergence was the first idea
of TD adaptive filtering, it turns out that the implicit decorrelation
of the transformed input vector can be exploited in PEM-based
AFC and AEC. The DCT is performed at each sample whereas
FDAF typically works on a frame-by-frame basis [3] and so a
better convergence is expected.

It is finally noted that there may be several other orthogonal
transforms suitable for adaptive filtering algorithms. The DCT is
one of the most popular orthogonal transforms and closest to the
optimal KLT in speech applications.

3. SIMULATION RESULTS

Simulations were performed using speech signals. The sampling
frequency in every simulation was8 kHz. In the AEC simula-
tions the far-end (FE) or loudspeaker signal was a female speech
signal and the near-end (NE) signal a male speech signal; in the
AFC simulations the near-end signal was the same female speech
signal as in the AEC simulation. In the AEC simulations, the
microphone signal consists of three concatenated segments of
speech: the first12 s segment consists of echo only, the second
segment is the sum of echo+ near-end signal generating a DT
situation of13 s, and the third segment is echo only again. The
performance measures consist ofmisadjustment(MSD) for both
AFC and AEC and themaximum stable gain(MSG) for AFC.
The MSD between the estimated feedback pathf̂(t) and the true
feedback pathf represents the accuracy of the feedback path es-
timation and is defined as,

MSD(t) = 10 log10

∥

∥

∥
f̂(t)− f

∥

∥

∥

2

2

‖f‖22
(13)

The achievable amplification before instability occurs is mea-
sured by the MSG, which is derived from the Nyquist stability
criterion [1] and defined as

MSG(t) = −20 log10[max
ω∈φ
|J(ω, t)[F (ω)− F̂ (ω, t)]|] (14)

whereφ denotes the set of frequencies at which the loop phase is
a multiple of2π (i.e., the feedback signalx(t) is in phase with
the near-end signalv(t)), andJ(ω, t) denotes the forward path
processing before the amplifier, i.e.,G(ω, t) = J(ω, t)K with
K the forward path gain.

The near-end signal to echo ratio (SER) was set at two differ-
ent levels:−25 and−15 dB which are typically found in hands-
free mobile communications. The AR model order in AEC was
chosennA = 1 following the indications given in [5]. A white
(Gaussian) background noise at35 dB SNR was added to the mi-
crophone signal. In AFC, the forward path gainK was set3
dB below the MSG without feedback cancellation. Two differ-
ent AR model orders were chosen as in [5]:nA = 12 which is
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common in speech coding for formant prediction andnA = 55
being high enough to capture all near-end signal dynamics. The
step sizes of the adaptation were tuned such that every algorithm
had the same initial convergence rate. This choice aims to make
a fair comparison of the resulting steady-state error of the solu-
tion. Two measured acoustic impulse responses were obtained
from real devices, i.e., an80-tap echo path from a mobile de-
vice for AEC and a100-tap feedback path from a hearing aid for
AFC simulations. In every case sufficient order was assumed.
The linear prediction window lengthM was chosen to be20 ms
(160 samples), which corresponds to the frame in which speech
is considered stationary. Four algorithms were compared in total,
namely normalized least mean squares (NLMS), transform do-
main NLMS (TD-NLMS), PEM-AFROW and transform domain
PEM-AFROW (TD-PEM-AFROW).

3.1. Discussion

AEC: Fig. 3.1 shows the AEC performance in terms of MSD at
different SER. On the one hand it is observed that, as expected,
NLMS performs very poorly during DT periods resulting in near-
end speech distortion and no echo cancellation; therefore it will
be excluded from the following discussion. On the other hand,
it is observed that TD-PEM-AFROW outperforms the other al-
gorithms during DT periods in both−15 dB and−25 dB SER.
These two SER situations require a different analysis: In the case
of SER−15 dB the TD-PEM-AFROW is consistently better than
PEM-AFROW for around5 − 6 dB in average and around10
dB better than TD-NLMS. The latter, however, offers reasonable
robustness against DT. In the case of SER−25 dB the outstand-
ing performance of TD-PEM-AFROW is demonstrated showing
that the MSD remains around the same value as before the DT,
and very importantly, with only small deviations compared to the
other algorithms. This is of great importance since any devia-
tion of the filter coefficients will lead to undesired echo (whose
level is much higher) disturbing the error signal. This is exactly
the weakness of PEM-AFROW in very low SER, since its MSD is
around8−9 dB higher than for TD-PEM-AFROW and moreover
its variance is also higher. In the−15 dB SER case, TD-PEM-
AFROW still obtains an improvement in MSD of3 − 4 dB with
respect to the−25 dB SER case, whereas PEM-AFROW barely
gets1 dB improvement. Surprisingly enough TD-NLMS obtains
better MSD values than PEM-AFROW in this case.
AFC: Fig. 4 shows the AFC performance in terms of MSD and
Fig. 5 in terms of MSG. Before continuing it is necessary to
clarify that the solid line (i.e., instantaneous gain K) represents
the limit at which the system is still stable; if the instantaneous
gain K rises above the MSG, then the system becomes unstable
and howling will appear. Between the solid line and the dotted
one (i.e., the achievable MSG before feedback cancellation is ap-
plied) some “ringing” and therefore near-end distortion will ap-
pear (but not yet instability). If the MSG of an algorithm is above
this threshold this means that some more amplification, repre-
sented by the MSG, could be applied in the forward gain of the
system without instability. In both Fig. 5(a)-(b) it is shown that
the NLMS is close to instability, meaning that some ringing dis-
torting the near-end signal appears and no additional amplifica-
tion would be possible without howling. Interestingly enough,
TD-NLMS remains stable as shown in Fig. 5(a)-(b) and even
performing better in terms of MSG than PEM-AFROW with an
AR model order of12 as shown in Fig. 5(a). Again TD-PEM-
AFROW greatly outperforms the other algorithms: the MSD is
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Fig. 3. AEC performance: Misadjustment with different SER

consistently better for about5 dB than that of PEM-AFROW and
the MSG is shown to be much higher even with a low AR model
order. It is worth noting that TD-PEM-AFROW also shows better
performance both in terms of MSD and MSG than those shown
in [2] using more complex near-end signal models.

4. CONCLUSION

This paper has investigated the performance of a DCT-based TD-
PEM-AFROW algorithm in terms of double-talk robustness in
AEC and general improvement in AFC, with marginal com-
plexity increase. Although the direct application of the DCT
matrix requires O(n2

F ) operations a fast DCT can be applied
with O(nF log nF ) operation only [9]. TD-PEM-AFROW is
compared with standard NLMS, TD-NLMS and PEM-AFROW
in different scenarios i.e., different SER in AEC and different
AR model orders in AFC. It is shown that the combination of a
prewhitening of the input and microphone signals together with
transform-domain filter adaptation, successfully leads to an algo-
rithm that solves the problem of decorrelation in a very efficient
manner. The TD-PEM-AFROW algorithm is very robust in DT
situations and boosts the performance of the simplest AFC (i.e.,
using only an AR model for the near-end signal). In the AFC
context it actually outperforms state-of-the-art solutions that use
more complex models for the near-end signal.

2425



0 10 20 30 40 50 60 70 80
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

t (s)

M
is

a
d
ju

st
m

en
t

(d
B

)

AFC performance

 

 

NLMS

TD-NLMS

PEMAFROW

TD-PEMAFROW

(a) Misadjustment AR model order12

0 10 20 30 40 50 60 70 80
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

t (s)

M
is

a
d
ju

st
m

en
t

(d
B

)

AFC performance

 

 

NLMS
TD-NLMS
PEMAFROW
TD-PEMAFROW

(b) Misadjustment AR model order55

Fig. 4. AFC performance: Misadjustment, with forward gain3 dB below
the MSG before feedback cancellation is applied, at different AR model
orders
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