20th European Signal Processing Conference (EUSIPCO 2012)

Bucharest, Romania, August 27 - 31, 2012

AES S-BOX USING FERMAT’S LITTLE THEOREM FOR THE HIGHLY CONSTRAINED
EMBEDDED DEVICES

M. M. Wong *

M. L. D. Wong?

A. K. Nandi® I. Hijazin*

ISoECS, Swinburne University of Technology Sarawak, Kuching, Malaysia
*Dept. EEE, Xi’an Jiaotong-Liverpool University, Suzhou, China
3 Dept. EE&E, The University of Liverpool, Liverpool, U.K.
4 FEIS, Swinburne University of Technology, Victoria, Australia.

ABSTRACT

The recent increase of resource-constrained embedded de-
vices have led to the need of lightweight cryptography.
Therefore, the design of secure communication algorithms
that fit in this highly constrained environments has become
a fundamental issue in cryptographic circuit design. In this
paper, we propose an optimization methodology that would
efficiently reduces the code size of the S-box, the most expen-
sive operation of the Advanced Encryption Standard (AES).
Here, we perform a study on composite field AES S-box
constructed using an inversion algorithm based on Fermat’s
Little Theorem (FLT). Consequently, we derive two AES S-
box constructions over the fields GF((24)?) and GF((22)%)
respectively. Our methodology results in smaller compu-
tational cost compared to the conventional Look-up Table
(LUT) method, which is commonly deployed on microcon-
trollers.

Index Terms— Advanced Encryption Standard (AES), S-
box, Fermat’s Little Theorem (FLT), microcontroller (MCU),
lightweight implementation

1. INTRODUCTION

Small embedded applications such as the smart cards, radio-
frequency identification (RFID) tags, sensor nodes are often
characterized by their strong low cost constraints in imple-
mentation. Therefore, microcontrollers (MCUs) are often
used for such applications. As these applications manipulate
on potentially sensitive data, a secure authentication proto-
cols are highly required for security and privacy purposes.
Therefore, the design of lightweight ciphers, that are suitable
for these resource constrained MCU has become a very active
research topic over the recent years.

The Advanced Encryption Standard (AES) [1] is currently
the most widespread and also the algorithm of choice for sym-
metric encryption. However, this cipher is claimed to be un-
suitable for 4-bit MCUs due to its expensive operations [2].
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Furthermore, as AES manipulates on 8-bit data, it is better
suited for 8-bit MCUs or other CPUs with larger datapath
[3, 4]. These 8-bit architectures are commonly reported in
the literatures and are mainly aimed at highly efficient AES
implementation [5, 6]. On the contrary, there was no reported
work on AES implementation in 4-bit MCUs until the recent
work by Kaufmann and Poschmann [4] in 2011.

Instead of focusing on the clock speed optimization, our
goal in this study is to investigate the feasibility of the stan-
dardized cryptography (specifically the AES) on the ultra-
lightweight devices such as 4-bit MCUs. The contributions
of this study are two-fold. First, we aim at further reduc-
ing the code size of the non-linear transformation, S-box, so
that it is feasible and efficient in MCU platform. Rather than
using direct employment of LUT, we employ the composite
field arithmetic (CFA) that efficiently mapped the arithmetic
of the AES S-box from G F(2®) to its isomorphic fields of the
lower orders. With this, the arithmetic cost will be reduced
accordingly and therefore, the code size would be minimized
as well.

Second, to our best knowledge, this is the first study to
present a detailed review of efficient multiplication inversion
algorithm based on Fermat’s Little Theorem (FLT) for CFA
AES. Here, we present two CFA AES S-boxes using FLT
over the field GF((2*)?) and GF((2%)*) respectively. In this
study, we proved that there is a substantial gain in our ap-
proach, in term of code size reduction, compared to the direct
LUT method as suggested in [4].

The rest of this paper is organized as follows: in Section
2, we describe the block cipher AES as well as the justifica-
tion on code size reduction approach performed in this work.
Next, our proposed AES S-boxes, using the FLT-based in-
version algorithm, the Itoh-Tsujii inversion (ITI) algorithm
are presented in Section 3. In Section 4, our results are dis-
cussed and benchmarked analytically with the previous work
reported in [4]. The paper is concluded in Section 5.
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2. COMPOSITE FIELD ARITHMETIC IN
ADVANCED ENCRYPTION STANDARD

The Rijndael AES is the new encryption standard selected by
the National Institute of Standards and Technology (NIST)
in 2002 as the replacement of the Data Encryption Standard
(DES). It is a symmetric block cipher with a constant block
size of 128 bits (16 bytes) that supports the key lengths of 128,
192 or 256 bits. It performs encryption and decryption pro-
cesses on an iterative basis where each iterative step is known
as an operation round. The number of the operation round
used is determined by the key length (10, 12 and 14 rounds
for key lengths 128, 192 and 256 bits respectively).

Each operation round is consisted of four transformations,
namely the SubBytes (applies non-linear S-box to the bytes
of the states), ShiftRows (wire crossing), MixColumns (a
linear diffusion layer) and AddRoundKey (a bitwise XOR
or the round key). The round keys involved are generated
from the secret key through an expansion routine that reuses
the S-box in the SubBytes transformation. Previous studies
have identified the SubBytes transformation as the bottleneck
of the entire encryption process [7]. Structurally, the Sub-
Bytes transformation, also known as S-box consists of a mul-
tiplicative inverse over GF'(28) followed by an affine trans-
formation. Note that the multiplicative inverse is the most
expensive operation in finite field arithmetic. Consequently,
AES appears to be an expensive choice, with a relatively large
gate-count and code size when ultra-lightweight devices are
involved.

There are two common AES S-box implementation ap-
proaches that have been reported in the literature, which is
by using direct LUT method and by using combinatorial cir-
cuitry through CFA. The first approach is a conventional and
straightforward way whereby the outputs for all possible input
combinations are pre-tabulated in memory form. While it is
simple in nature and often results in high throughput, the ad-
vantages are traded off with larger memory size consumption
and hence having larger code size. Therefore, this method
is rather unpractical for lightweight devices such as the 4-bit
MCUs.

On the other hand, the second approach attempts on con-
structing combinatorial AES S-box circuit through CFA by
using the field GF(((2%)?)?) for hardware implementation
[8,9, 10, 11, 12]. In this approach, the computation will be
reduced to several algebraic manipulations (multiplications
and multiplicative inverse) over its subfields, GF((22)?) and
GF(2?). The approach successfully results in a compact ar-
chitecture for AES S-box for hardware implementation but it
manipulates on 2-bit data and involves complicated crossing
and branching signal paths. As a result, the construction may
not be best suited for MCU platforms.

Therefore, this leads to the need for the alternative that is
both feasible and efficient for AES implementation on MCU.
Here, we propose a new approach that employs both the CFA

and the LUTs. We adopt CFA in the design such that the
arithmetic of the higher field is efficiently reduced to the arith-
metic of the lower order field. Meanwhile, in order to avoid
the complicated crossing and branching signals, we employ
LUT to perform the arithmetic of the lower order field. With
this, the LUT required would be relatively smaller and hence
reduces the code size required. In this work, we propose to
employ the field of GF((24)?) for AES S-box.

It is worth noting that the above mentioned GF'(((22)?)?)
CFA AES S-boxes employed the Extended Euclidean Algo-
rithm (EEA) for the multiplicative inverse [8, 9, 10, 11, 12].
Apart from EEA, the FLT is another common tool for com-
puting the multiplicative inverse. In this paper, we employ
the multiplication inversion algorithm based on FLT, the Itoh-
Tsujii inversion (ITI) algorithm, for our AES S-box design.
As this approach was not reported in the previous works of
AES, we also present the FLT-based CFA AES in the field
GF((2%)%) for comparison with the G F((2*)?) construction.
Overall, two FLT-based CFA AES S-boxes will be presented
in this study.

3. THE PROPOSED AES S-BOXES USING
FERMAT’S LITTLE THEOREM

FLT stated that for any non zero element A of field GF'(2™),
its multiplicative inverse can be computed as A~! = 42" 2 =
A2 A%’ ... A1 Several finite field inversions based on
FLT have been found in the literatures. One of which was the
Itoh-Tsuji inversion algorithm (ITI) which is performed on
composite field GF((2™)™) in a standard basis representation
[13, 14].

Though ITI does not perform a complete inversion, it ef-
ficiently reduces the extension field inversion to the inversion
in the subfield GF(g™). We can readily obtain the inverse of
A € GF((2™)™) based on Theorem 1.

Theorem 1. [13] The multiplicative inverse of an element
A of the composite field GF((2™)™), with A # 0, can be
computed by A1 = (A")"LA"™"! mod P(x) where A" €
GF(2") and thatr = (2" —1)/(2" - 1).

The CFA AES S-boxes using ITI algorithm over G F'((24)?)

and GF((22)*) are presented in Section 3.1 and Section 3.2
respectively.

3.1. Inversion in Field GF((24)?)

Let GF((2%)?) be constructed using irreducible polynomials
P(r) = 22+ r+w' and Q(y) = y* +y+ 1. The norm w**
is an element of GF(2%) which can be denoted as {1001}5.
For element A(x) = {41, 40} € GF((2%)?), its inversion,
A~ is computed using the fours steps as follows.

Step 1: A1 = A;(z) = A6 = A" = {4, A}

RN
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A = Ao+ 4
An = A
Step2: A" =A""1. A
AT = A4
= ho + h2w14
ho = ApAyp
he = Aj1An

Derivation of hg and hy involved a multiplication over the
subfield, GF(2%). Instead of performing direct GF(2*) mul-
tiplication, we choose to work on their respective power over
the primitive element. Multiplication of finite elements is
equivalent to addition of their respective powers over the
primitive element.

As all the elements of GF(2") form a cyclic group, the
element a; € GF(2") can be expressed as a multiple of a
primitive element w, where w; = w'. All of the pair (w;, 7)
can be stored in two tables, [og-table sorted on the first com-
ponent (w;) and antilog-table sorted on the second compo-
nent (¢). Each of the tables took up 2™ of n bits, resulting
in a total memory requirement of 64 bits LUT for the field
GF(2%). Using these tables, the product of field elements
wj, w, € GF(2™) can be derived as,

w;wy, = antilog [log(wy) + log(wg)] (mod 2" —1). (1)

In summary, this technique requires determination of the
power with respect to the primitive element (log conversion)
that is equivalent to the operands. Next, addition is per-
formed on the powers and the resultant value is mapped back
to the field element (antilog conversion). Based on (1), one
multiplication over the subfield GF(2*) would require three
LUTs.

Step 3: (A")~!

In this case, we utilize a new G F'(2*) inversion which is sim-
ilar to our proposed G'F'(2*) multiplication. In general, for
w, € GF(2™) the inversion operation can be expressed as,

~! = antilog [~ log(w,)] (mod 2" —1). 2)

Wy,

Thus, the same [og and antilog conversions are required here.
Let B € GF(2%) denoted as w®. Its inverse B~ = wY is
then,

B-B7! =

w”® - w?

[
g 2 = r

and therefore y = 15 — x. After the log conversion, y can
be easily determined through subtraction and then followed
by an antilog conversion to obtain (A”)~!. Therefore, one
inversion over the subfield GF(2*) would take up two LUTs.
Step 4:(A")~1. A71

Last, two GF(2*) multiplications are required to multiply
(A™)~* from Step 3 and A"~ from Step 2.

3.2. Inversion in Field GF((22)%)

Let GF((2%)*) be constructed using irreducible polynomials
P(z) = 2*+23 422 +wand Q(y) = y*+y+1. The norm w
is a primitive element of G F'(22) of which can be denoted as
{10}5. Forelement A(x) = {43, A2, A1, Ao} € GF((22)%),
its inversion, A~! is computed using fours steps as stated in
the following.

Step 1: A7~1 = A;(x) = A% = A2 . 42" . 42

AT = A2)
3 .
= Z Ai:v”
=0
= AO + A1$4 + AQ!ES + Ag(Elz
A]() 1 w 1 1 AO
AII o 0 0 w w Al
Apa o1 w2 ow Ay
A[g 0 1 0 W A3
Arg = Ap+wA; + A+ As
AII = wA2 + ’U}Ag
A[Q = A1 + U)2A2 + U)Ag
A[3 = A1 + U)A3
A24 = AH(I)
3
_ Z Ail'ﬂ(i
=0
= Ap+ A1x16 + A2$32 + A3$48
AII() 1 w 1 w AO
Al [0 0 1 0 Aq
A[]2 {0 1 0 0 A2
A113 0 w w 1 Ag
AIIO = A0+U/A1+A2+UJA3
AIII = A2
Az = A
Ar;s = wA;+wAs + Ag
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A26 = A[]] (x)
3
_ Z A, 204
1=0
— AO + A1$64 + AQl‘le + A3$192
A[[]() 1 1 1 VV2 AO
A[[[1 o 0 1 W2 w Al
A1112 o 0 0 w W A2
A[]]g, O W2 w w A3
Arrro = Ao+ A+ As + w4
A = A+ w?As + wA;
Arrre = whAz +wAs
Az = w?A; +wAs + wAs

Eventually, we utilized Karatsuba’s algorithm in [15] to per-
form multiplications of A"~} = 42° . A2" . 42°.
Step2: A" =A""1. A

AT = ArA
= ho+ (ha + hs)w
ho = Aodjo
hy = A1Ajz+ AyAjs + AstAj
hs = AsAjz+ AsAj2

Derivation of kg, hy and hs involved multiplication over sub-
field, GF (22). In this case, we use direct multiplication since
GF(2?) is arelatively small field. Let h(z), g(z) € GF(2?)
and that f(x) = h(z) - g(z) is defined as,

fi = (91 +90)(d1 + do) + (90do)
fo g1d1 + godo

Step 3: (A")~!
Here we utilized EEA for GF(2?) inversion. For A" =
{91, g0}, its inversion, (A") =1 = {dy, dy} is computed as,

di = @
do g1+ 9o

Step 4:(A")~1. A7—1
Last but not the least, two GF'(2?) multiplication is required
to multiply (A")~! from Step 3 and A" ! from Step 2.

4. RESULTS AND DISCUSSION

In this section we are going to review and analyze the com-
plexity of the proposed two AES S-box constructions. In ar-
chitectural level, both of the constructions are as depicted in
Figure 1 and 2. Our implementations are benchmarked with
the direct LUT approach reported in [4] and the analytical re-
sults are summarized in Table 1.

The direct LUT approach is the conventional way of AES
S-box implementation whereby all the 256 of 8-bit data are
hard-coded in memory form. This approach would there-
fore require a total memory allocation of 2, 048-bit for the
S-box, which is considerably large for ultra-lightweight de-
vices. On the other hand, we proposed a methodology that
employed CFA, of which the arithmetic are reduced to the
field of GF(2%). Due to the utilized FLT-based algorithm,
the generalized ITI algorithm, the construction requires only
a total of 14 64-bits LUT. Therefore, only a total of 896-bit
memory is required, which less than half of what is required
in the direct LUT approach. Apart from the LUTs, the op-
eration also requires 8 XORs and 6 additions/substractions.
Therefore, our approach has successfully minimizes the com-
putational costs and this would reduce the code size required
in the implementation.

AES S-box of the field GF(28) requires large LUT in
hardware implementation. Meanwhile, the pure combinato-
rial CFA over GF(((22)?)?) is complicated and manipulates
on 2-bit data. Therefore both of the fields are deemed to be in-
efficient for MCU platform. On the other hand, we proposed
the use of GF((2%)?) that would result in small code size,
efficient and feasible for 4-bit MCU implementation.

Table 1. Complexity of AES S-box using direct LUT ap-
proach and our proposed FLT-based inversion

Work Total Gate

AND XOR Adder/Subtractor LUT (64 bits) LUT (2,048 bits)

LUT approach [4] - - - - 1

our GF((24)2) - 8 6 13

our GF((22)%) 59 98

5. CONCLUSION

In this study, we present an efficient and compact AES S-
box that is feasible for MCU implementations. Our work em-
ployed the CFA that maps the original GF(28) to its isomor-
phic field of GF'((2%)2). By further employing the FLT based
inversion algorithm, the total size of the LUT required can be
reduced efficiently from 2, 048 bit to 896-bit. In addition to
that, the arithmetic (in the field GF(2*)) can then be effi-
ciently manipulated on the 4-bit MCU platform as well. To
our best knowledge, this is the second work that studies the
optimization of AES on 4-bit MCU besides [4]. We have the-
oretically reviewed that our optimization managed to promote
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element-to-power  power-to-element |
conversion conversion i

Fig. 1. AES S-box over GF'((2%)?) and using generalized ITI
algorithm

Step3 Step4
e e P2 R
A ={h3, h2, h1, ho}
A™'={g3, 92, g1, g0}

Fig. 2. AES S-box over GF'((2?)*) and using generalized ITI
algorithm

further code size reduction compared to the method proposed
in [4]. For future work, we would like to extend this work by
implementing our designs on a chosen 4-bit MCU platform.
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