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ABSTRACT 

 

Many commonly applied audio features suffer from certain 

limitations in describing the data content for classification 

and retrieval purposes. To remedy this drawback, in this 

paper we propose an evolutionary feature synthesis (EFS) 

technique, which is applied over traditional audio features to 

improve their data discrimination power. The underlying 

evolutionary optimization algorithm performs both feature 

selection and feature generation in an interleaved manner, 

optimizing also the dimensionality of the synthesized feature 

vector. The process is based on multi-dimensional particle 

swarm optimization (MD PSO) with two additional 

techniques: the fractional global best formation (FGBF) and 

simulated annealing (SA). The experimented classification 

and retrieval performances over a 16-class audio database 

show improvements of up to 11% when compared to the 

corresponding performances of the original features. 

 

Index Terms— Feature generation, particle swarm 

optimization, neural networks, content-based classification 

 

1. INTRODUCTION 

 

Content-based audio classification and retrieval is a widely 

studied topic in the field of signal processing and, 

especially, machine learning. Since the pioneer work of [1], 

the development of supervised machine learning techniques 

has led to more advanced and expanded classification 

methods, such as the one proposed in [2], where support 

vector machines (SVM) were successfully applied. 

Statistical models, specifically Gaussian mixture models 

(GMM) and hidden Markov models (HMM) have also 

provided satisfactory classification and retrieval results (see 

e.g. [3] and [4], respectively). The idea in these is to 

estimate the probability density function (pdf) for the feature 

vectors of each predefined audio class. Recently, studies 

related to environmental sounds and context recognition 

have also emerged. In [5], environmental sounds were 

indexed and retrieved successfully in both indoor and 

outdoor conditions using HMMs and a modified spectral 

clustering algorithm, whereas in [6] event histogram-based 

context recognition was proposed with a versatile collection 

of environmental sounds, providing a recognition rate of 

92.4%. In addition to context recognition, several other 

applications can be mentioned for audio indexing and 

retrieval, such as advanced database browsing, query-by-

example, and highlight spotting. 

In this work, a distinct feature generation phase is to 

precede the actual audio classification and retrieval. An 

early work of feature generation (proposed in [7] for digit 

recognition) suggested taking the originally extracted 

features and combining those in a proper manner to produce 

more descriptive new (or transformed) features. A similar 

fundamental idea was applied by Krawiec and Bhanu in [8], 

where the term evolutionary feature synthesis (EFS) was 

first adopted to describe the use of evolutionary algorithms, 

such as genetic programming (GP), for feature generation 

purposes. The idea was to encode potential object 

recognition procedures, while the training process consisted 

of co-evolving feature extraction procedures, each being a 

sequence of elementary image processing and feature 

extraction operations. The method avoided recurring to the 

means commonly used in recognition systems, whereas the 

obtained recognition ratios themselves were not superior to 

those achieved by standard methods. In [9] and [10], the 

idea of feature generation was brought into audio domain, as 

GP was used to produce new (artificial) audio features. 

Encouraging results were reported e.g. over music genre 

classification, although only 4 classes were involved. 

In this paper, we propose an evolutionary feature 

synthesis (EFS) technique to enhance common audio 

descriptors. The technique uses multi-dimensional particle 

swarm optimization (MD PSO) [11] to search for the 

optimal feature synthesis parameters among a predefined 

search space. An initial work of the method was reported in 

[12] for image retrieval, whereas here the focus is on audio 

classification (by support vector machines) and retrieval. An 

overview of an ideal feature synthesis process is illustrated 

in Figure 1, in which considerable improvements in feature 

discrimination can be observed after the synthesis operation. 

Contrary to the figure, in our approach also the output 

feature vector dimension is optimized, which is a property 

being omitted in the previous feature generation approaches. 
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Fig. 1. An illustrative example of an ideal feature synthesis 

operation over 2-D feature vectors of a 3-class dataset. 

The rest of the paper organizes as follows: Section 2 

introduces the underlying stochastic optimization algorithm 

applied in the process, the MD PSO, whereas the feature 

synthesis process itself is presented in Section 3. The 

obtained classification and retrieval results are shown in 

Section 4, and Section 5 concludes the paper.  

 
2. STOCHASTIC OPTIMIZATION ALGORITHM 

 

2.1. Multi-dimensional particle swarm optimization 

 

Particle swam optimization (PSO) was first introduced by 

Kennedy and Eberhart in [13]. It is a population-based 

optimization technique, in which a swarm of particles 

propagates iteratively in a predefined search space. After the 

initialization phase of the algorithm, where the particles are 

randomly (uniformly) distributed, each particle is evaluated 

using a proper fitness function,  [ ], and moved 

accordingly within the search space. The ultimate goal is to 

converge to the global optimum of the search space, for 

which each particle   has the so-called social and cognitive 

terms. The former corresponds to the best position found by 

the entire swarm (the global best, GB), whereas the latter 

stands for the best position found by the particle   itself. 

In the case of MD PSO, the native PSO operation is 

extended by allowing the particles to perform inter-

dimensional jumps within a set dimension range,   
[         ]. Thus, the MD PSO searches for the global 

best solution among several search spaces with different 

dimensions. The dimensional navigation is controlled by a 

dimensional PSO process interleaved with the traditional 

PSO operations, in which each particle keeps also track of 

the global and personal best dimension (from which the best 

fitness value so far has been achieved). The pseudo-code 

and more details about MD PSO can be found in [11]. 

 

2.2. Global convergence methods 

 

2.2.1. Fractional global best formation 

In order to better avoid local minima during the MD PSO 

search process, a fractional global best formation (FGBF) 

method [14] is performed within the MD PSO process. The 

method exploits the potential of individual particle elements, 

evaluating a separate fitness score for each. It then produces 

a new artificial global best (aGB) particle by combining the  

 

Fig. 2. An illustration of the formation of an aGB particle in 

dimension 4. Elements of three different particles, a, b, and 

c (of dimensions of 2, 6, and 3) are combined in the process. 

best elements found from the entire swarm. Whenever the 

new aGB particle surpasses in fitness the native global best, 

the aGB is considered as the new global best. In the case of 

MD PSO, a separate aGB is assigned for every dimension. 

Thus, as illustrated in Figure 2, the aGB particle can be 

formed by combining elements collected from several 

dimensions, which further increases the probability of 

finding aGB particles with improved fitness scores. 

 
2.2.2. Simulated annealing 

As suggested in [15], a simulated annealing (SA) algorithm 

can be utilized within the PSO process to search around the 

current global best position found by the swarm. In short, 

after each PSO iteration, a new “neighbor” solution is 

suggested, which may then replace the current global best. 

The process is controlled by a specific temperature term,   , 

an update constant  , and a cooling constant,    . The 

number of iterations,     , needs to be assigned for the SA 

algorithm, for which the pseudo-code is given in Table 1. 

 

3. EVOLUTIONARY FEATURE SYNTHESIS 

 

3.1. Overview of the system 

 

To meet the objectives assigned for an ideal feature 

synthesis process, i.e. to perform an optimal feature 

selection and modification in an optimal output feature 

vector dimension, four processing steps are performed. For 

Table 1. The SA algorithm in the MD PSO process 

1. Randomly distribute the particles into the search space. 

2. Evaluate the fitness of each particle,  [ ],   [   ]. 
3. For (              ) { 

    3.1 Set      ;    ; 

    3.2       (      ) { 

        3.2.1 Generate a neighbor solution,     : 

                          ( )   ;  

            // (     ( ) is a  -dimensional random vector) 

        3.2.2 Evaluate the fitness of      

        3.2.3 Compute    [    ]   [   ]; 
        3.2.4 If (   [     (     )]      [   ])  

Set         ; 

        3.2.5 Set         ;   // (  is the cooling constant) 

    } 

} 

4. Update the particle positions, see [11] for details. 

5. If (PSO iterations left) return to 2. 
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each new synthesized feature, the system, with a specified 

synthesis depth value  , 

 

1. selects     original features        , 

2. scales the selected features with weights        , 

3. selects   operators,        , to be applied over 

the selected and scaled features, and 

4. bounds the output with a non-linear operator (here 

tangent hyperbolic is applied). 

 

Suppose   (     ), where   [   ], stands for applying a 

specific operator    over the features    and   . Then, a 

formula for synthesizing a new feature    can be defined as 

 

       [  (    (   (  (         )     )  )     )]   

  (1) 

that is, first the operator    is applied to the weighted 

features    and   , after which the operator    is applied to 

the result of the first operation and the weighted feature   , 

and so on. Finally, the operator    is applied to the result of 

all the previous operations and the weighted feature   . 

The term “evolutionary” applied in this work refers to 

both the underlying computing technique, the MD-PSO, as 

well as the nature of the feature synthesis process itself, 

which can be performed in either one or several runs. Here 

the idea is that each additional run can further synthesize the 

features from the previous run and further increase the 

discrimination power. A block diagram of the overall 

synthesis process is illustrated in Figure 3, where R 

synthesis runs are performed. 

 

3.2. Particle encoding 

 

In a MD PSO process, the search space dimension, 

  [         ], corresponds to the number of features to 

be synthesized into the output feature vector (FV), that is, 

the output FV dimension. Each particle position represents a 

potential solution on how to perform the synthesis for the 

original features. For this, each particle position 

encapsulates a complete set of synthesis parameters: the 

indices of the selected features, the feature weights, and the 

selected operators. Accordingly, the  th element of the 

position of a particle   corresponds to a way of synthesizing 

the  th feature of the output feature vector. Thus, each 

positional element must include the following:     

feature indices,     feature weights, and   operators. For 

this, the positional elements of each particle are encoded as 

a vector of length     , including     “ -type” and   

 

 

Fig. 3. A block diagram of the proposed EFS with R runs. 

The arrows correspond to distinct feature vectors (FVs). 

 “ -type” components. These define the corresponding 

synthesis parameters as follows: 

 

    ⌊  ⌋              {   }, 
      ⌊  ⌋        {   }, 
   ⌈  ⌉                 {   }, 

(2) 

 

where the ⌊ ⌋ and ⌈ ⌉ operators correspond to the floor and 

ceiling mathematical integer functions, respectively. The 

value ranges for the components can be defined based on the 

input feature vector dimension,  , and the total number of 

operators available,  , as    [   [ and    ]   ]. The 

weight values are limited to       . 

To give an example of the encoding, Figure 4 presents a 

particle   position in dimension 6 with the corresponding 

synthesis process. The synthesis process of the first element 

of the output feature vector at run r, FV(r), is shown in 

detail, while a similar process is performed separately for all 

the output vector elements. For simplicity, the synthesis 

depth value,  , is set to 3, meaning that       features, 

       , are selected from input feature vector FV(r-1). 

Thus, as is demonstrated in the figure, each of the particle 

elements include        encoded synthesis parameters, 

        and        . The dimension of the input feature 

vector is     and the total number of available operators 

is    , meaning that the value ranges for the two 

component types can be defined as    [   [ and    
]   ]. According to Figure 4, the selected features obtained 

by the underlying MD PSO process are the  th
,  rd

,  st
, and 

again the  rd
 element of the input feature vector, while the 

corresponding operators are selected as ‘ ’, ‘   ’, and ‘ ’. 
Thus, performing the synthesis process as given in (1), the 

 st
 element of the output FV is obtained by 

 

       [   ((   [ ]     [ ])    [ ])     [ ]]   (3) 

  

 

Fig. 4. An example of a particle encoding in a 6-

dimensional search space with a synthesis depth set to 

   , input feature vector dimension of    , and the 

number of operators set to    . 
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where  [ ] stands for the  th
 element of the input FV.  

Note that by setting      , discarding the feature 

selection as     [ ], and setting each operator    to ‘ ’, 

the approach becomes identical to a single-layer perceptron 

(SLP) classifier. Also, performing several runs with such 

synthesis parameters corresponds to a multi-layer 

perceptron (MLP) with a one-to-one analogy between the 

number of hidden layers and the number of runs performed 

in the synthesis process. In this sense, it can be stated that a 

regular feed-forward artificial neural network (ANN) is a 

special case of the proposed synthesis approach. 

 

3.3. The fitness function 

 

The fitness measure for evaluating the discrimination ability 

provided by the synthesized features plays an important role 

in the whole synthesis process. Here we propose a measure 

based on clustering criteria. Suppose the different labels of a 

 -class database are denoted as          , and the 

corresponding class centroids as          . Then, a 

discrimination measure (  ) can be defined for a set of 

synthesized feature vectors,   { }, as 

 

   [ ]    ( )       (  )     (     )⁄ , 

where 

     (  )  
 

 
∑

∑ ‖    ‖     

|  |

   

   

  

 

    (     )        (‖     ‖). 

(4) 

 

The terms of (4) are defined as follows:   ( ) stands for 

the number of false positive feature vectors occurring among 

the synthesized feature vectors   (meaning that those feature 

vectors are actually located in a closer proximity to some 

other class centroid than their own),      (  ) is the 

average intra-class distance, and     (     ) corresponds to 

the minimum centroid distance among all the classes. The 

  [ ] measure strives for minimizing the intra-class 

distance, while maximizing the shortest inter-class distance. 

Ideally, minimizing this fitness measure leads to a situation 

where each synthesized feature vector is in the closest 

proximity of its own class centroid, thus leading to a high 

discrimination among classes as illustrated in Figure 1. 

 

4. EXPERIMENTAL RESULTS 

 

The features obtained by the proposed evolutionary feature 

synthesis (EFS) technique were tested with classification 

and retrieval experiments. For this, three feature vectors, 

consisting of commonly applied low-level audio features 

(see e.g. [3], [5]), 

 

 STATISTICS (39-D): audio signal statistics (mean, 

variance, standard deviation, average deviation, 

skewness, kurtosis) + band energy ratio, spectral 

centroid, transition rate, fundamental frequency, 

irregularity, flatness, and tonality, 

 MFCC (39-D): 13
th

 order coefficients + deltas, 

 ACOUSTIC (38-D): tri-stimulus, smoothness, 

spectral spread, spectral roll-off, RMS, amplitude, 

inharmonicity, spectral crest, loudness, noisiness, 

power, odd-to-even ratio, and 6 sub-band powers, 

 

were extracted from a general audio database of 1421 clips. 

Frame features of 40 ms were first extracted, which were 

then merged and averaged over longer segments to decrease 

the total number of feature vectors per clip. The database 

included 16 pre-defined general audio classes of wide range: 

male/female speech, male/female singing, whistling, bird 

sounds, dog barking, fire sounds, breaking glass, 

classical/rock/techno music, motorcycle sounds, footsteps, 

applause, and crowd cheering. The samples were gathered 

from TIMIT corpus (speech), RWC music database (music), 

and StockMusic.com net store (environmental sounds). Such 

a database was selected to demonstrate the EFS scalability 

and performance with several types (and rather high 

number) of classes. The EFS parameters were empirically 

set to no. of particles      , no. of MD PSO iterations 

     , and synthesis depth    . The output dimension 

range was set to [         ]  [     ], while the total 

number of operators, listed in Table 2 for features    and   , 

was set to     . Finally, the number of iterations for the 

SA algorithm was, also empirically, set to        . 

In all the shown experiments, a randomly selected EFS 

train set (45% of the original features) was first used in 

searching the optimal synthesis parameters (     ). These 

were then used to synthesize the actual output features for 

the whole dataset. In the first experiment, the discrimination 

measure (DM) was evaluated for all the feature vectors 

before and after the synthesis. The obtained results are 

presented in Table 3, demonstrating a considerable 

improvement with all the features (recall that the smaller the 

DM value, the better the separation between individual 

classes). This strongly supports the suitability of the EFS to  

Table 2. List of operators applied for features    and    

   formula    formula 

0     9       

1     10   (     ) 
2    (     ) 11       

3    (     ) 12    (    (     )) 

4       13    (    (     )) 

5       14    (         ) 

6       15    (    (     )) 

7   (     ) 16        ( (     )  (     )) 

8       17        ( (     )  (     )) 

Table 3. The obtained discrimination measures (DM) for 

the original and synthesized features 

 STATISTICS MFCC ACOUSTIC 

Orig. DM 4092 10560 3895 

Synth. DM 1086 4948 1290 
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Table 4. The classification error (CE) statistics obtained by 

SVM over the original and synthesized features 

 STATISTICS MFCC ACOUSTIC 

Orig. CE (%) 25.4 ± 2.8 11.1 ± 1.5 19.1 ± 2.5 

Synth. CE (%) 14.4 ± 1.5 10.7 ± 2.0 17.0 ± 1.9 

 

clustering tasks. Next, classification evaluations were 

performed in a five-fold cross-validation manner, so that 

every sample in the database was tested during the process. 

The classification was done using SVMs (libSVM, [16]) 

with sigmoid kernel and different parameter combinations, 

ranging from   {           } and   {       }  Such 

a kernel selection makes the SVM model equivalent to a 2-

layer-perceptron ANN. As can be seen in Table 4, the 

smallest average classification errors demonstrate clear 

improvements with the synthesized features, especially with 

the STATISTICS features. The MFCCs are designed to be 

treated more as “a whole”, so that the rather sparse feature 

selection may diminish the performance obtained with them. 

As a final experiment, Table 5 shows the retrieval 

average precisions (AP) obtained for each feature vector. 

Precision stands for the percentage of true positives in the 

retrieved results, whereas the average was obtained after 

querying all the database items one by one (by taking the 

Euclidean distance between the FVs of the query item and 

each database item). Interestingly, now the MFCCs show an 

increase of 11% in AP score after 2 EFS runs, and the AP 

values of other features are also notably improved. 

Moreover, performing consecutive EFS runs can further 

enhance the results in most cases. The minor contradiction 

obtained between the MFCC classification and retrieval 

performance may suggest that the used fitness function is 

actually more applicable for clustering than classification.  

 

5. CONCLUSIONS 

 

An evolutionary feature synthesis (EFS) approach for 

providing discriminative (artificial) features for audio 

classification and retrieval purposes was proposed. The 

applied multi-dimensional PSO algorithm proved being able 

to find the (near-) optimal parameters for the synthesis 

process. The EFS combines feature selection and feature 

generation, being also capable of searching the optimal 

solution among several output vector dimensions. 

Depending on the original feature vector, the EFS method is 

capable of improving the classification and retrieval 

precisions by over 10% with consecutive EFS runs. Testing 

the method with other databases, classifiers, and fitness 

functions are potential topics for future research. 

Table 5. The average precision (AP) retrieval performances 

over original and synthesized features 

Feature set 
Original 

AP (%) 

EFS Run 1 

AP (%) 

EFS Run 2 

AP (%) 

EFS Run 3 

AP (%) 

STATISTICS 44.7 51.4 53.2 54.9 

MFCC 35.0 39.4 46.0 44.6 

ACOUSTIC 48.5 50.6 52.1 52.6 

REFERENCES 

 
[1] E. Wold, T. Blum, D. Keislar, and J. Wheaton, “Content-based 

classification, search, and retrieval of audio”, in IEEE Multimedia 

Journal, vol. 3, no. 3, pp. 27-36, 1996. 

[2] G. Guo and S. Z. Li, “Content-based audio classification and 

retrieval by support vector machines”, in IEEE Trans. Neural 

Networks, vol. 14, no. 1, pp. 209-215, 2003. 

[3] G. Tzanetakis and P. Cook, “Musical genre classification of 

audio signals”, in IEEE Trans. Speech and Audio Processing, vol. 

10, no. 5, Jul. 2002. 

[4] M. Helén and T. Virtanen, “Audio query by example using 

similarity measures between probability density functions of 

features”, in EURASIP Journal on Audio, Speech, and Music 

Processing, vol. 2010, ID 179303, 12 p, Jan. 2010. 

[5] G. Wichern, J. Xue, H. Thornburg, B. Mechtley, and A. 

Spanias, “Segmentation, indexing, and retrieval for environmental 

and natural sounds,” in IEEE Trans. Audio, Speech and Language 

Processing, vol. 18, no. 3, pp. 688–707, 2010. 

[6] T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, ”Audio 

context recognition using audio event histograms”, in Proc. 18th 

European Signal Processing Conference (EUSIPCO), Aalborg, 

Denmark, pp. 1272-1276, Aug. 2010. 

[7] P.D. Gader and M.A. Khabou, “Automatic feature generation 

for handwritten digit recognition”, in IEEE Trans. Pattern Analysis 

and Machine Intelligence, vol. 18, no. 12, pp. 1256-1261, 1996.  

[8] K. Krawiec and B. Bhanu, "Visual learning by evolutionary 

feature synthesis," in Int. Conf. on Machine Learning, pp. 376-383, 

Washington, DC, Aug. 2003. 

[9] I. Mierswa and K. Morik, “Automatic feature extraction for 

classifying audio data”, in J. Machine Learning, vol. 58, no. 2-3, 

pp. 127-149, 2005. 

[10] F. Pachet and P. Roy, “Analytical features: a knowledge-

based approach to audio feature generation,” EURASIP Journal on 

Audio, Speech, and Music Processing, vol. 2009, Article ID 

153017, 23 pages, 2009. 

[11] S. Kiranyaz, T. Ince, A. Yildirim, and M. Gabbouj, 

“Evolutionary artificial neural networks by multi-dimensional 

particle swarm optimization”, in Neural Networks, vol. 22, pp. 

1448-1462, Dec. 2009. 

[12] S. Kiranyaz, J. Pulkkinen, T. Ince, and M. Gabbouj, ”Multi-

dimensional evolutionary feature synthesis for content-based 

image retrieval”, in Proc. IEEE Int. Conf. on Image Processing, 

Sep. 2011. 

[13] J. Kennedy, R Eberhart., “Particle swarm optimization”, in 

Proc. IEEE Int. Conf. On Neural Networks, vol. 4, Perth, Australia, 

pp. 1942–1948, 1995. 

[14] S. Kiranyaz, T. Ince, A. Yildirim, and M. Gabbouj, 

“Fractional particle swarm optimization in multi-dimensional 

search space”, in IEEE Trans. Systems, Man, and Cybernetics – 

Part B: Cybernetics, vol. 40, no. 2, pp. 298-319, April 2010. 

[15] F. Zhao, Q. Zhang, D. Yu, X. Chen, and Y. Yang, “A hybrid 

algorithm based on PSO and simulated annealing and its 

applications for partner selection in virtual enterprise”, in Advances 

in Intelligent Computing, vol. 3644, pp. 380-389, 2005. 

[16] C.-C. Chang, C.-J. Lin, “LIBSVM: a library for support vector 

machines”, in ACM Transactions on Intelligent Systems and 

Technology, vol. 2, no. 3, pp. 1-27, Apr. 2011. 

1478


