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ABSTRACT the term “pulse compression” is more properly applied to
achieve volumetric resolution, as opposed to only range res
Gution. Moreover, methods for recovering resolution inaad

viewpoint, and extend it to a more general 4-D pulse comjpess 'maging syste_rr!s h_ave alw_ays assgm_ed a continuous model
The process of focusing and scanning over a 3-D object is-inte for the reflectivity information. This is perhaps the major
preted as a MIMO 4-dimensional convolution between a rafiegt ~ '€ason why the solution to the inverse problem could only be
tensor and a space-varying system. This implies that dewets ~ approximated, normally done so via matched filtering. The
established equalization methods employed in commupitsttan  factis, after sampling, reflectivity can be seen as a disdret
be easily extended to a 3-D scenario with the purpose of @olgie formation whose granularity is dictated by the requiredear
exact reconstruction of a given reflectivity volume. Assmgithat  resolutionfor both range and cross-rangmaging.
no multiplg scattgring occurs, resolution is only .Iimite(.iapge .by In this paper, we recast the imaging problem into one that
the sampling device in the unfocused case, while unlimitecase 1 5ns 3 reflectivity volume into measurements collected by
of focusing at multiple depths. Reconstruction under 46rong ., minating a target object with a focused beam. As a re-
or least-squares criterion depends solely on the amouriversity - L
induced by sampling in both space and time, which furtheasl S_UIt’ the common W!Sdom related tc_) m'”'”.‘“m range resolu-
for a tradeoff between range and cross-range resolution. tion fortarget_de_tectlon can b_e considered irrelevantedhe _
pulse transmission problem is restated as a 3-D communica-
tion problem through the medium’s Green functign;, z, ¢).

We revisit the fundamental problem of 1-D pulse compressio
in a multistatic MIMO focused scenario, from a communicasio

1. INTRODUCTION

In radar imaging, resolution is generally dictated by itaeo 2. IMAGING IN LIGHT OF COMMUNICATIONS

sponding system point spread function, the response taw pOiIn the MIMO case the transmitting and receiving beams can

source as a result of an external excitation (see [1] and thg, generally unfocused, each antenna element transmitting

references therein). This notion of resolution turns out@o gjterent waveform, where a particular patch of the antenna
questionable, as the interpretation of echoes received &0 transmits omnidirectionally from each element illuminati
range of continuous targets according to a linear moddBJ2], the target. For a given point in the volume, the received
allows one to cast the imaging problem as a communicatiosignal at pointy on the antenna, given the transmitted pulse
system that maps the target reflectivity function onto meap(t, =) at pointz only, can be compactly written as
surements, which in turn suggests that by virtue of sampling )
and equalization, one can achieve unlimited spatial réisolu y(t,z,2) = Ja(2) I (y)lg(2, 2,8) * ;g (2, 2, 8) % p(t)]s(2)

An interesting fact with all current radar-based approache = Js(2) (g (y, 2,1) * g(2,2m, 1) xp" (1)]s(2) (1)

is that resolution in range seems to be treated quite diffgre _ . _
from resolution in cross-range. That is, while the formerWheres(z) is the reflectivity functionp”(t) denotes the sec-

requires “pulse compression”, the latter is tackled viadine an de_rlvatlve with respectﬁoandjs () andJr(y)_ are time
" which is achieved by increasing the Carriepenvanves of the current density at the transmitting aad r

compression”, o . h
frequency and/or antenna dimensions. Note that because §f§VNd Points on the antenna. _ _
Our goal is to reconstruct the entire object volume, or

general we have a collection of signals transmitted and re- - ,
ceived from several directions, the pulse is in reality a 3-Dfauivalently, to recover all the cross sections that forra 3

function whose shape is given by the combined effect Oj:r_nage. nge is_ vyhere the geometry of the problem comes into
the transmitted pulse and the MIMO medium’s Green funchicture. First, it is assumed that the aspect angle of adirant
tion. This motivates us to think of compression as one thalp@s elements are such that they see the same radar cross sec-

is performed in all three dimensions in space, in a way thato" (RCS). Second, we would like to preserve the geometry
of the volume we want to reconstruct, in the sense that each

Thanks to CNPq, the Fulbright Comission, and CAPES for fagdi cross section is “unrolled” to form a 3-D tensor represantin
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the object image. That is, we shall map each point(@f),  gx (s, th%, and using th&raunhofercondition
onto the corresponding point of the unrolled object, defemed at the focal plane, we have

continuous tensa$ (r), wherer = [r; ro 7|". Its discrete- i1

time version is denoted by thé, x R, x Rz tensorS, whichis ) = - p(t = |ry — xo|/c) i: J(Z)emcwm{ e
obtained by sampling(r) at[noTo n:T1 kT,]". The quan- ° Arm|ry, — |
tities { Ry, R>} define the target resolution in cross range,
while R; is the desired resolution in range. We shall denote 2 -
by S(k), k=0,1,..., Rs— 1the Ry x R, matrix containing zm /w(r;c — To,t — T)p(T — [P — xo|/c)dT  (4)
a rectangular lattice of points within a cross section ofcthe
ject at rangek, and byS(n) a vector of reflectivities within Bre(rs:t)

the tensorS, n = ng,n1,...,nR,r,. Moreover, we de- wherew(r), — z,,t) is the 2-D discrete time Fourier trans-
rlOte bySk the reﬂeCtiVity at pOinf’k fork = O, 1, ceey R—-1, form ofthe time Varying tapering functiof([)ejwctlgk (iL‘g, t)
R = R1RyR3. We further defing? = Ry Ry. Letus spatially  aty, at timet, andgy(r s, t) beam pattern at timg with f
sample the antenna surface, so that the transmitting pateh ¢ denoting the focal point. The complete system is illusttate
tains@Q; = @1Q- antenna elements, which transi@itwave- by the spatial multirate structure of Fig. 1(a).
forms, i.e.pe(t), ¢ = 0,1,...,Q; — 1. These in turn are re- The interpretation of this scheme is as follows. Assume
ceived atQ), receiving elements, aj(¢),i = 0,1,...,Q- —  we have the antenna beam focused at Because the beam
1. The complete model comprises forward and backwargs narrow at the focal plane, and due to a finite extent depth of
MIMO channels denoted bg(t) and Gy(t), respectively. field, the illuminated portion of the object can be represént
Letug(t), k =0,1,..., R be thek-th output ofG (¢), atthe by aK;, x K, x K3 parallelepiped, which contains the cor-
corresponding point, ,, _, responding significant reflectivity samples. Their posisio

ug(t) = Z pe (t) * gr (e, t) (2 relative to the point:; are set by the spatial shift§—m;) 2

£=0 m;,0_m;, 1 _m;,2 . é

and note that we can instead express the problem as a map- ! 2 ‘" 0,0, K= 1, wherel = Ky K K.

o~ A
ping from reflectivities to measurements. We thus see that/® further defineil’ = K, K. The columns of the down-
our main problem is how to recover the tensirgiven the ~ Sampling matrixB define the geometry in which these spa-

measurements;(t), at the desired resolutio;, R, Rs}. tial blocks are processed, as the object is scanned at a given

Here, we analyze the case of a focused (transmitted) beam.'at€- Thatis, les., ands.., be two parallelepipeds (tensors),
possibly intersecting, at focal points, andr, respectively.

2.1. Focused Imaging For instance, choosing = |det B | (i.e., the volume of
the fundamental parallelepiped defined By, implies that
Focusing is achieved by integration of delayed copies of thgonoverlapping blocks are being processed each time. This
transmitted signal, weighted by the time derivative of the C s actually the lowest spatial rate for which the object can b
rent density over the antenna, giving rise to a beam patterprocessed without loss of useful information. On the other
Assuming that the antenna elements are closely located, apgng when choosing = I the object is being scanned at
p(t) is narrowband, the transmitter in this case becomes e highest possible rate, which is given by the desiredaipat
bidimensionaphased arraymodeled as a SIMO system rep- resolution. For simplicity, we shall assume rectangulaapa
resented by a steering vector. The receiving beam, howev%lepipeds, so that the beam region of support coincidds wit
can be generally unfocused, so that the signals are callectg rectangular parallelepiped as well. Each tensor blodieis t
at all antenna elements and processed by a MIMO system. (continuous-time) convolved with the; x K, x Q, tensor

; Let them-thentry of the undelying SIMO system be given 4  the resulting impulse response of the cascade of the
elwetm wheret,, is the delay applied to the signal poimt 3 (’;a #)p(t) with G (t), for f = {a, b}
relative to the signal at the center of the antempawith ~ “F\f P Lo 1t assumé, (z;) = 1, and letF,. (1)
respect to the focal point, which we denotesy. We shall "~ P 0 —1yl5e thelt: x I matrices that constitute
omit the dependence ony for simplicity of notation. Let %__r (LZ) at the fTocaI'poimr,- jl _ 021 D — 1. whereD
f VE sy Loy ’

uk(t) be th? signal at, defined_ Within the er_th of field is number of foci. Th&),. x 1 received vector is defined as
corresponding t ;. Equation (2) in this case is given by ) "

(=0
* gr(xe,t)

Y, (1) = [po(t) w1(t) - yo.—1]" and expressed as
Qr—1 .
Uk (t) = —OJ?, J(Z)p(t)ejwcw * Gk (iE[, t)7 (3) yr]' (t) = Frf (t)*s"’f (6) + Ury (t)7 j=0,1,... 7D_ 1, (5)
=0 where vec' (Fr;0(t))
where the term/(¢) consists of a 2-D window that provides F. (1) = : (Qr x K) (6)
apodization so as to shape the transmitted beam pattern. Let vec (Fr. ar-1(t)
a, = xy — x, be a vector from the center of the antennato an e .
arbitrary point on the antenna, and define: w,/c, thewave —ands, (¢) = vec(s,,(£)),£ =0,1,..., K3—1. The quantity
number. Thus, expressing(x,,t) explicitly asgx(z¢,t) = vy, (t) is the corresponding vectorized noise samples.
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Here is the crucial point in understanding the imagingany other MIMO estimation problem, formulated linearly as
process in general. First, it is important to note the differ either a Bayesian or classical estimation (Minimum Vareanc
ence between the range resolution defined by the spatial satdnbiased Estimator-MVUE). Now, assume the output signal
pling 7;., and the time separation between two consecutives sampled afl,. In formulating the convolution model for
received pulses (here, more generally we speak of MIMQhe received echoes, two common structures can be induced,
pulses), which leads to the sampling r&fe = 2Amin/c,  depending on the receiver design:
where Ay is the minimum target separation required for a
certain application, in the colocated radar. This coinsidth 31, Block processing

the spatial samplin@’. in the far field scenario, since in this

case we are allowed only one focal point in range. Thereforé-6t £ be the received signal window length, and define the
T, — Amin, that is, we are limited by the achievable time vectorized tensor of of reflectivities and its correspogaiet

sampling. Focusing on the other hand allows sampling at th%elved vector around;, respectively:

desired spatial resolution, so thAf., is only defined within x,, (k) =vec([sr,(V(k+B —1)) -+ sp, (V(k+1))
the incoming tensors of reflectivities. That is, sampling th sr,(VE)]) ®)
received vectors at the ratd’; yields the discrete model G, =vee([y, (L—1) - y, (1) g, (0)]) )
Y., (n Z Fr (n—0)sr, (VL) + vy, (n), (7) whereB'=N+L—-1,fork=0,1,...,B—1. This choice
=0 of £ induces a block-by-block transmission with interblock

forj=0,1,...,D—1,whereF, (0)...F, (N —1)isthe interference (IBI), where each block has sizeThat is, letD
sampled version of',., (t) atT, while s, (V') corresponds  be the number of foci set to cover the object space. Then,
tq the down_sampled version ef.,(£) , with V' = Amin/T;.. g, (k) = Hy,z,, (k) + 0, (k), j=0,1,....D (10)
Figure 1(b) illustrates the difference betweEnand Apip. 7

where
frf(t) Fj0) - Fj(N—1) - 0 0
< Receiveanlennasurfacevo(t) Hrj = |: - " .
S(r z(—m())@ Sry (O)Bo(r |5 D () 0 0 0 S F;(0) - F (N — 1()11)
el Ol (o e Vi) isQ-L x K(N + L —1), andv,, (k) is the vectorized noise
t - H . .
. **Mf; “ samples. This can be the case in a monostatic scenario, where
: : AN at the time the radar starts listening, part of the signal has

e plen, (] ,H.,/ _ already returned to the radar site, illustrated in Fig. 2.

. . vQ,—1(t)
) _ L YQ,—1 (t)
e L Y 2 %

(@
s Observation window
f”“ Vg <t> Fig. 2. Overlapped pulses — short window
Q ra yra 1 . . . .
ool Assume that the observation window is sufficiently long

so that all incoming MIMO pulses can be completely ob-
4 served. In this case, transmission becomes memoryless,
o ﬂ ﬂ vrb“ meaning that at the time the radar starts listening, no iméer

=4 ( CTer tion of near targets is present. Defining the input and output
tensors ag,., = vec([ sy, (V(B—1)) -+ s.,(V) sr,(0)])

and’yrj = ’U@C([yTj (N + B - 2) e yrj(l) ~y7'j (O) ])’

whereH ., has dimensionéN + B — 1)Q, x BK, we have

b

Fig. 1. Equivalent mappings (a) and (b) from reflectivity to
measurements. Yy, (k) = Hyyxp (k) + 0r,(k), j=0,1,....,D (12)

WhenH ., is atall full rank matrix, a solution is found rather

independently for every focal point. Two important solaso
3. MODELING FOR REFLECTIVITY ESTIMATION can be envisionedz) Matrix InverS|0n In this case, the so-

lution is given byz,., (k) = ItH ) rr Y, (k) where
Suppose we are to estimate a tensor arriving from one particu

lar focal point. Essentially, the tensor imaging can be ldesst I5 = [Opiys Ipivni OnRxng,—s) (13)
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The optimal delay,,; € [0, NQ,]is chosen suchthatitmini- ,0del as well. We thus have
mizes the output noise power, by minimizing the matrix norm

H(.I:{H,.j)‘1|.| (see [5], for the case o, Toeplitz); () Yy, (n) vec(Vi, n) (15)
Minimum variance (least-squares)his is given by: _ Uec([y;w(n) y:u,k(") ) y;mil’k(n) ),
&y (k) = (Hy Hy)) 'Hy g, (k), j=0,1,...,D. (14) (16)
! so we can replace (7) by a more compact form as
Observe that either in the unfocused scenario, or in case 51
each tensor block; , is to be recovered independently from a, (n) = Z Ha, (n — Ovec(Sa, (VO) + Vi (n), (17)

other blocks, its 3-D resolution can only rely on the fedgipi

of the sampling rate device. That is, while lateral resofut whereH g, (n — () is a two-level block banded matrix of size
in th_ese cases depe_no!s on the spatial gﬂd _den5|ty, resol@-r(R1 + K1 — 1)(Ro + Ko — 1) x Ry Ro, representing a
tion in range will be limited taAyin. The point is thus how \iMO 2-D convolution. Defining

accurate one can estimatg, by using these techniques, spe-

cially when H ., is not a tall full rank matrix. As we have Sy, =[vec(Sq, (V(B —1))) ---
mentioned, the beam foci and their positions relative to thtydk =[G4 (N+B-2) -
antenna will define the convolution model employed. For this

reason, we shall consider the beam motion in 2 separate stepsd denoting¥,, = vec(Sy,) and g/dk = vece(Yy,), we
first with respect to lateral motion, covering all azimuthsla have
elevations, which is then followed by depth motion.

£=0

vec(Say, (V) vee(Sa, (0)) ]
Ua, (1) 94, (0)] (18)

Yy, = Ha, Xa, + va, (19)

a) Lateral Motion where#y, is aQ, (N + B — 1)(Ry + K1 — 1)(Ry + K» —
Consider the signals in (7), and assume that the object is) x Ry R2 B block toeplitz matrix, with block banded blocks.

scanned at a fixed depth= d). across all possible azimuths The three-dimensional model (19) fully describes the fldfi
and elevations such that the object is still within the beamtransmission scenario for a single depthigt= co; we see

This corresponds to picking; = 7, = [ 1 72 di ],
where{ry,r2} are varied in order to covép; = (R + K1 —
1)(R2+ Ko — 1) focal points, fod =0, 1,...,D; — 1. Thus,
we recognize the sequentg;. (n) = F.r;(n — £)s, (V{)}

as the output of a MIMO 2-D space varying convolution be-

tween the constituting matrices,., ,(n) defined in (6), and
the tensor slice at randgél corresponding to deptty,, which
we denote byS,, (V¢). This convolution at deptHy, results
in @, images, or equivalently, a matrix with vector entries
each one havin@,. coefficients, which we denote Ly, ..
Note that similarly to the definition of a time window, which

sets the number of received images from a focal point, on
can also set a spatial window length, with dimension smalle

thanD;. However, in order to exploit full space and time di-
versity, we shall continue to assume a full spatial convofut

1The fact is that, in addition to the 1-D time convolution mbfie each
focal point, scanning at an arbitrary resolution rate \@eadderlapping of suc-
cessive blocks, which naturally characterizes a volumetoinvolution be-
tween the object, and the space-varying tensor defined blgehm pattern
for different focal points. The spatial model for this ogera will depend on
the number directions and depths the beam is moved to, whesietilarly to
a block processing in time, motion can induce a particulac@ssing struc-
ture in space (e.g., block processing, with or without a@xl The overall
process is in general a 4-D MIMO space (time)-varying camioh model.
For instance, choosin® = (R1 + K1 —1)(R2 + K2 —1)(R3 + K3z — 1)
implies scanning at the the spatial resolutigfy, 7%, T }, and corresponds
to a complete 4-D MIMO (space-varying) convolution. On thkeo hand,
for the fastest scanning, we can pitk= R; Rz R3/|det B| foci, and the
whole space is scanned with nonoverlapping blocks. This ted that un-
like the unfocused scenario, or in case information reckefiem around the
focal point is not sufficient for independent estimationseath block, fo-
cusing allows for further diversity; in this sense, resiolutis unlimited, and
ultimately dictated by the desired spatial samplingSefand not only by the
sampling device. As a result, estimation must be accongdigbintly, after
data received from around all foci have been properly aequir
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that while resolution is unlimited in cross-range, we aik st
limited to estimateB out of K3 images within the tensas.

b) Depth Motion

The lateral scanning can be generally performed at several
depths, giving rise to a full 4-D convolution model. In other
words, (17) can be defined far= 0,1, ..., Dy, whereDy =
(Rs + K3 — 1), so that overali:; coversD = (R; + K1 —

"1)(R2 + K2 — 1)(Rs + K3 — 1) focal points. There is, how-

ever, a subtle difference in the way convolution is perfaime
gg the axial direction. While the 2-D convolution sum can be
gomputed at the minimum resolution stEp, 7>}, the volu-
metric convolution is obtained by combining images at range
Ve, ¢ =0,1,...,B—1,and attime®,1,...,.N + B — 1,

for each deptldy,. LetCq, ., withc=0,1,..., B — 1 be the
c-th block column ofH 4, and define

(20)
(1)

Y =94, Yo,  Yap, , b
X =[vec(S(R3 — 1)) -+ vec(S(1)) wvec(S(0))]

Then, denotingy = vec(Y') andx = vec(X), we write

where? is now a 4-level block banded convolution matrix,
with dimensions),. (N + B —1)(R; + K1 — 1)(Re + Ko —
1)(R3 + Kg — 1) X BR1R2R3.

Again, we can proceed in finding an estimate of the reflec-
tivity tensor S in (22) via matrix inversion or LS, wittH .,
replaced byH. Note that the tall full rank condition imposed
for separate blocks becomes much more relaxed in this case
due to the redundancy of reflectivity in adjacent blocks.

(22)



4. PRELIMINARY EXPERIMENTS

We assume a free-space scenario where a beam pattern is gen-
erated by a 1mx 1m antenna with uniform tappering func-
tion and current density, producing two separatie func-
tionsby(n) andby (n). We estimate a tensor, with resolution
Ty = To = Amin = 0.1. The pulse length i, = 1077,

and the carrier frequency is set fo= 4 GHz. In theA-scan
imaging, the beam is swept over object, and for each received
signal, the estimator is computed based solely on the trans-
mitted pulse, while the beam pattern is usually designed ir
order to minimize the blurring effect in this direction. Imet

3D modeling, however, whatever the beam pattern in cros:
range is, we make use of its shape when estimating along th
direction as well. Observe that a tall matrix can always be
induced by moving the beam over the object so as to perforr
a complete spatial convolution. Hence, improved resultg ma
be expected compared to the caseledcans.

We consider an 8&80 scene image 3(a) at a fixed range
and an SNR of 10dB, for a randomly generated pulse witlrig. 6. Chirp transmit pulse. (left) 3D-LS solution; (right)
Gaussian samples. The optimal minimum-norm matrix in-Optimal minimum norm matrix inverse fad-scan process-
verse and 3D-LS estimation are illustrated in 3(b) and 4(cjng.
respectively. These can be compared with the corresponding

A-scan schemes in 4(d) and 5(e). We further compare the%ﬁ) timati i0s. The behavior of i b wel
recovered scenes with the ones obtained with a Chirp trans- estimation scenarios. 1he behavior of equalizers are we
established in a 1D scenario, and the challenge in their im-

mission, in 6(a) and 6(b). We clearly see the effect of condi- | tai lies | here th ditioni A

tioning in the matrix inverse solutions, and superioritytioé P edrrfnba lons |ets mr::'af]ei\{[vh ere ﬁ cond IQnInG'ch Oth

full convolution information based receivers andz,; becomes too hign. orough comparison with other
methods in fair equivalent scenarios is still to be pursueal i

separate future work.

5. REFERENCES

[1] R. Merched, “Superresolution and superfast receivers i
free-space radar imagindCASSP 2011, Prague, Czech
Republig pp. 1241 - 1244, May 2011.

[2] R. J. Zemp, C. K. Abbey, M. F. Insana, “Linear sys-
Fig. 3. (left) Original scene; (right) Optimal minimum norm tem models for ultrasonic imaging: application to sig-
matrix inverse. nal statistics [EEE Trans. Ultrason. Ferro. Freq. Con-
trl., vol. 50, no. 6, pp. 642—654, June 2003.

[3] T. Taxt and J. Strand, “Two dimensional noise-robust
blind deconvolution of Ultrasound Images/EEE
Trans. Ultrasonics, Ferroelect., and Freq. Control
48(4), pp. 555-566. July 2001.

[4] C.-Y. Chen, and P. P. Vaidyanathan, “MIMO Radar
Waveform Optimization With Prior Information of the
Extended Target and CluttetEEE Trans. Signal Pro-
cessingvol. 57, no. 9, pp. 3533—-3544, Sep. 2009.

Fig. 4. (left) 3D-LS solution; (right) Optimal minimum norm  [5] A. Scaglione, G. B. Giannakis, and S. Barbarossa,
matrix inverse forA-scan processing. “Redundant filterbank precoders and equalizers — Part
II: Blind Channel Estimation, Synchronization, and Di-
In this paper, we have presented preliminary simulations  rect Equaization,JEEE Trans. on Signal Processing
considering the effect of the transmitted signalirscan and vol. 47, pp. 2007-2022, July. 1999.

100



