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ABSTRACT

We revisit the fundamental problem of 1-D pulse compression
in a multistatic MIMO focused scenario, from a communications
viewpoint, and extend it to a more general 4-D pulse compression.
The process of focusing and scanning over a 3-D object is inter-
preted as a MIMO 4-dimensional convolution between a reflectivity
tensor and a space-varying system. This implies that several well
established equalization methods employed in communications can
be easily extended to a 3-D scenario with the purpose of achieving
exact reconstruction of a given reflectivity volume. Assuming that
no multiple scattering occurs, resolution is only limited in range by
the sampling device in the unfocused case, while unlimited in case
of focusing at multiple depths. Reconstruction under zero-forcing
or least-squares criterion depends solely on the amount of diversity
induced by sampling in both space and time, which further allows
for a tradeoff between range and cross-range resolution.

1. INTRODUCTION

In radar imaging, resolution is generally dictated by its corre-
sponding system point spread function, the response to a point
source as a result of an external excitation (see [1] and the
references therein). This notion of resolution turns out tobe
questionable, as the interpretation of echoes received from a
range of continuous targets according to a linear model [2],[3]
allows one to cast the imaging problem as a communication
system that maps the target reflectivity function onto mea-
surements, which in turn suggests that by virtue of sampling
and equalization, one can achieve unlimited spatial resolution.

An interesting fact with all current radar-based approaches
is that resolution in range seems to be treated quite differently
from resolution in cross-range. That is, while the former
requires “pulse compression”, the latter is tackled via “beam
compression”, which is achieved by increasing the carrier
frequency and/or antenna dimensions. Note that because in
general we have a collection of signals transmitted and re-
ceived from several directions, the pulse is in reality a 3-D
function whose shape is given by the combined effect of
the transmitted pulse and the MIMO medium’s Green func-
tion. This motivates us to think of compression as one that
is performed in all three dimensions in space, in a way that

Thanks to CNPq, the Fulbright Comission, and CAPES for funding.

the term “pulse compression” is more properly applied to
achieve volumetric resolution, as opposed to only range reso-
lution. Moreover, methods for recovering resolution in radar
imaging systems have always assumed a continuous model
for the reflectivity information. This is perhaps the major
reason why the solution to the inverse problem could only be
approximated, normally done so via matched filtering. The
fact is, after sampling, reflectivity can be seen as a discrete in-
formation whose granularity is dictated by the required target
resolution,for both range and cross-rangeimaging.

In this paper, we recast the imaging problem into one that
maps a reflectivity volume into measurements collected by
illuminating a target object with a focused beam. As a re-
sult, the common wisdom related to minimum range resolu-
tion for target detection can be considered irrelevant, once the
pulse transmission problem is restated as a 3-D communica-
tion problem through the medium’s Green functiong(x, z, t).

2. IMAGING IN LIGHT OF COMMUNICATIONS

In the MIMO case the transmitting and receiving beams can
be generally unfocused, each antenna element transmittinga
different waveform, where a particular patch of the antenna
transmits omnidirectionally from each element illuminating
the target. For a given pointz in the volume, the received
signal at pointy on the antenna, given the transmitted pulse
p(t, x) at pointx only, can be compactly written as

y(t, x, z)=Js(x)Jr(y)[g(x, z, t) ⋆ ∂
2
t [g(z, x, t) ⋆ p(t)]s(z)

=Js(x)Jr(y)[g(y, z, t) ⋆ g(z, xm, t) ⋆ p′′(t)]s(z) (1)

wheres(z) is the reflectivity function,p′′(t) denotes the sec-
ond derivative with respect tot, andJs(x) andJr(y) are time
derivatives of the current density at the transmitting and re-
ceiving points on the antenna.

Our goal is to reconstruct the entire object volume, or
equivalently, to recover all the cross sections that form a 3-D
image. Here is where the geometry of the problem comes into
picture. First, it is assumed that the aspect angle of all anten-
nas elements are such that they see the same radar cross sec-
tion (RCS). Second, we would like to preserve the geometry
of the volume we want to reconstruct, in the sense that each
cross section is “unrolled” to form a 3-D tensor representing
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the object image. That is, we shall map each point ofs(z),
onto the corresponding point of the unrolled object, definedas
continuous tensorS(r), wherer = [r1 r2 r]

⊺ . Its discrete-
time version is denoted by theR1×R2×R3 tensorS, which is
obtained by samplingS(r) at [n0T0 n1T1 kTr]

⊺

. The quan-
tities {R1, R2} define the target resolution in cross range,
while R3 is the desired resolution in range. We shall denote
byS(k), k = 0, 1, . . . , R3−1 theR1×R2 matrix containing
a rectangular lattice of points within a cross section of theob-
ject at rangek, and byS(n) a vector of reflectivities within
the tensorS, n = n0,n1, . . . ,nR1R2 . Moreover, we de-
note bysk the reflectivity at pointrk for k = 0, 1, . . . , R̃− 1,
R̃ = R1R2R3. We further defineR = R1R2. Let us spatially
sample the antenna surface, so that the transmitting patch con-
tainsQt = Q1Q2 antenna elements, which transmitQt wave-
forms, i.e.,pℓ(t), ℓ = 0, 1, . . . , Qt − 1. These in turn are re-
ceived atQr receiving elements, atyi(t), i = 0, 1, . . . , Qr −
1. The complete model comprises forward and backward
MIMO channels denoted byGf (t) andGb(t), respectively.
Let uk(t), k = 0, 1, . . . , R̃ be thek-th output ofGf (t), at the
corresponding pointrk,

uk(t) =

Qt−1
∑

ℓ=0

p′′ℓ (t) ⋆ gk(xℓ, t) (2)

and note that we can instead express the problem as a map-
ping from reflectivities to measurements. We thus see that
our main problem is how to recover the tensorS, given the
measurementsyi(t), at the desired resolution{R1, R2, R3}.
Here, we analyze the case of a focused (transmitted) beam.

2.1. Focused Imaging

Focusing is achieved by integration of delayed copies of the
transmitted signal, weighted by the time derivative of the cur-
rent density over the antenna, giving rise to a beam pattern.
Assuming that the antenna elements are closely located, and
p(t) is narrowband, the transmitter in this case becomes a
bidimensionalphased array, modeled as a SIMO system rep-
resented by a steering vector. The receiving beam, however,
can be generally unfocused, so that the signals are collected
at all antenna elements and processed by a MIMO system.

Let them-th entry of the undelying SIMO system be given
ejωctm , wheretm is the delay applied to the signal pointm
relative to the signal at the center of the antennaxo, with
respect to the focal point, which we denote byrf . We shall
omit the dependence onrf for simplicity of notation. Let
uk(t) be the signal atrk, defined within the depth of field
corresponding torf . Equation (2) in this case is given by

uk(t) = −ω2
o

Qt−1
∑

ℓ=0

J(ℓ)p(t)ejωctℓ ⋆ gk(xℓ, t), (3)

where the termJ(ℓ) consists of a 2-D window that provides
apodization, so as to shape the transmitted beam pattern. Let
aℓ = xℓ−xo be a vector from the center of the antenna to an
arbitrary point on the antenna, and defineκ = ωo/co the wave
number. Thus, expressinggk(xℓ, t) explicitly asgk(xℓ, t) =

ḡk(xℓ, t)⋆
δ(t−|rk−xℓ|/c)

4π|r−xℓ|
, and using theFraunhofercondition

at the focal plane, we have

uk(t) = −ω2
o

p(t− |rk − xo|/c)

4π|rk − xo|

Qt−1∑

ℓ=0

J(ℓ)ej(ωctℓ+κa
⊺

ℓ
̂rk−xℓ)

⋆ ḡk(xℓ, t)

=
−ω2

o

4π|rk − xo|

∫

w( ̂rk − xo, t− τ )p(τ − |rk − xo|/c)dτ

︸ ︷︷ ︸

βk(rf ,t)

(4)

wherew( ̂rk − xo, t) is the 2-D discrete time Fourier trans-
form of the time varying tapering functionJ(ℓ)ejωctℓ ḡk(xℓ, t)
at rk at timet, andβk(rf , t) beam pattern at timet, with f
denoting the focal point. The complete system is illustrated
by the spatial multirate structure of Fig. 1(a).

The interpretation of this scheme is as follows. Assume
we have the antenna beam focused atrf . Because the beam
is narrow at the focal plane, and due to a finite extent depth of
field, the illuminated portion of the object can be represented
by aK1 × K2 × K3 parallelepiped, which contains the cor-
responding significant reflectivity samples. Their positions

relative to the pointrf are set by the spatial shiftsz(−mi)
∆
=

zmi,0
0 zmi,1

1 zmi,2
2 , i = 0, . . . ,K − 1, whereK

∆
= K1K2K3.

We further defineK̃
∆
= K1K2. The columns of the down-

sampling matrixB define the geometry in which these spa-
tial blocks are processed, as the object is scanned at a given
rate. That is, let̄sra

ands̄rb
be two parallelepipeds (tensors),

possibly intersecting, at focal pointsra andrb respectively.
For instance, choosingK = | detB | (i.e., the volume of
the fundamental parallelepiped defined byB), implies that
nonoverlapping blocks are being processed each time. This
is actually the lowest spatial rate for which the object can be
processed without loss of useful information. On the other
hand, when choosingB = I the object is being scanned at
the highest possible rate, which is given by the desired spatial
resolution. For simplicity, we shall assume rectangular paral-
lelepipeds, so that the beam region of support coincides with
a rectangular parallelepiped as well. Each tensor block is then
(continuous-time) convolved with theK1 ×K2 × Qr tensor
Frf

(t), the resulting impulse response of the cascade of the
βk(rf , t)p(t) with Gb(t), for f = {a, b}.

More specifically, assumeJr(xi) = 1, and letFrj ,q(t),
q = 0, 1, . . . , Qr−1, be theK1×K2 matrices that constitute
Frf

(t) at the focal pointrj , j = 0, 1, . . . ,D − 1, whereD
is number of foci. TheQr × 1 received vector is defined as
y
rj
(t) = [y0(t) y1(t) · · · yQr−1]

⊺

and expressed as

y
rj
(t) = F rf

(t)⋆srf
(ℓ) + vrf

(t), j = 0, 1, . . . ,D−1, (5)

where
F rj (t) =






vec
⊺

(Frj ,0(t))
...

vec
⊺

(Frj ,Qr−1(t))




 (Qr × K̃) (6)

andsrj
(ℓ) = vec(s̄rj

(ℓ)), ℓ = 0, 1, . . . ,K3−1. The quantity
vrj

(t) is the corresponding vectorized noise samples.
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Here is the crucial point in understanding the imaging
process in general. First, it is important to note the differ-
ence between the range resolution defined by the spatial sam-
pling Tr, and the time separation between two consecutive
received pulses (here, more generally we speak of MIMO
pulses), which leads to the sampling rateTs = 2∆min/c,
where∆min is the minimum target separation required for a
certain application, in the colocated radar. This coincides with
the spatial samplingTr in the far field scenario, since in this
case we are allowed only one focal point in range. Therefore,
Tr = ∆min, that is, we are limited by the achievable time
sampling. Focusing on the other hand allows sampling at the
desired spatial resolution, so that∆min is only defined within
the incoming tensors of reflectivities. That is, sampling the
received vectors at the ratenTs yields the discrete model

y
rj
(n) =

B−1∑

ℓ=0

F rj (n− ℓ)srj (V ℓ) + vrj (n), (7)

for j = 0, 1, . . . ,D− 1, whereF rj
(0) . . .F rj

(N − 1) is the
sampled version ofF rj

(t) atTs, while srj
(V ℓ) corresponds

to the downsampled version ofsrj
(ℓ) , with V = ∆min/Tr.

Figure 1(b) illustrates the difference betweenTr and∆min.
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Fig. 1. Equivalent mappings (a) and (b) from reflectivity to
measurements.

3. MODELING FOR REFLECTIVITY ESTIMATION

Suppose we are to estimate a tensor arriving from one particu-
lar focal point. Essentially, the tensor imaging can be castlike

any other MIMO estimation problem, formulated linearly as
either a Bayesian or classical estimation (Minimum Variance
Unbiased Estimator-MVUE). Now, assume the output signal
is sampled atTs. In formulating the convolution model for
the received echoes, two common structures can be induced,
depending on the receiver design:

3.1. Block processing

Let L be the received signal window length, and define the
vectorized tensor of of reflectivities and its corresponding re-
ceived vector aroundrj , respectively:

xrj (k) = vec([ srj (V (k +B′ − 1)) · · · srj (V (k + 1))

srj (V k) ]) (8)

ȳ
rj

= vec([ y
rj
(L − 1) · · · y

rj
(1) y

rj
(0) ]) (9)

whereB′ = N +L−1, for k = 0, 1, . . . , B−1. This choice
of L induces a block-by-block transmission with interblock
interference (IBI), where each block has sizeL. That is, letD
be the number of foci set to cover the object space. Then,

ȳ
rj
(k) = Hrjxrj (k) + v̄rj (k), j = 0, 1, . . . ,D (10)

where

Hrj =

[
F j(0) · · · F j(N − 1) · · · 0 · · · 0

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
. 0

0 0 0 · · · F j(0) · · · F j(N − 1)

]

(11)
isQrL× K̃(N +L− 1), andv̄rj

(k) is the vectorized noise
samples. This can be the case in a monostatic scenario, where
at the time the radar starts listening, part of the signal has
already returned to the radar site, illustrated in Fig. 2.

Observation window

. ..

Fig. 2. Overlapped pulses – short window

Assume that the observation window is sufficiently long
so that all incoming MIMO pulses can be completely ob-
served. In this case, transmission becomes memoryless,
meaning that at the time the radar starts listening, no informa-
tion of near targets is present. Defining the input and output
tensors asxrj

= vec([srj
(V (B− 1)) · · · srj

(V ) srj
(0) ])

and ȳ
rj

= vec([y
rj
(N + B − 2) · · · y

rj
(1) y

rj
(0) ]),

whereHrj
has dimensions(N +B − 1)Qr ×BK̃, we have

ȳ
rj
(k) = Hrj

xrj
(k) + v̄rj

(k), j = 0, 1, . . . ,D (12)

WhenHrj
is a tall full rank matrix, a solution is found rather

independently for every focal point. Two important solutions
can be envisioned: (i) Matrix Inversion. In this case, the so-
lution is given byx̂rj

(k) = (IT
δ Hrj

)−1IT
δ ȳrj

(k) where

I
T
δ =

[
0BK̃×δ IBK̃×BK̃ 0BK̃×NQr−δ

]
(13)
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The optimal delayδopt ∈ [0, NQr] is chosen such that it mini-
mizes the output noise power, by minimizing the matrix norm
‖(IT

δ Hrj
)−1‖ (see [5], for the case ofHrj

Toeplitz); (ii)
Minimum variance (least-squares). This is given by:

x̂rj (k) = (H∗

rj
Hrj )

−1
H

∗

rj
ȳ
rj
(k) , j = 0, 1, . . . ,D. (14)

Observe that either in the unfocused scenario, or in case
each tensor blocksrj

is to be recovered independently from
other blocks, its 3-D resolution can only rely on the feasibility
of the sampling rate device. That is, while lateral resolution
in these cases depends on the spatial grid density, resolu-
tion in range will be limited to∆min. The point is thus how
accurate one can estimatesrj

by using these techniques, spe-
cially whenHrj

is not a tall full rank matrix1. As we have
mentioned, the beam foci and their positions relative to the
antenna will define the convolution model employed. For this
reason, we shall consider the beam motion in 2 separate steps,
first with respect to lateral motion, covering all azimuths and
elevations, which is then followed by depth motion.

a) Lateral Motion

Consider the signals in (7), and assume that the object is
scanned at a fixed depthr = dk across all possible azimuths
and elevations such that the object is still within the beam.
This corresponds to pickingrj = rl,k = [ r1 r2 dk ],
where{r1, r2} are varied in order to coverD1 = (R1+K1−
1)(R2+K2− 1) focal points, forl = 0, 1, . . . ,D1− 1. Thus,
we recognize the sequence{y′

rj
(n) = F rj

(n − ℓ)srj
(V ℓ)}

as the output of a MIMO 2-D space varying convolution be-
tween the constituting matricesFrj ,q(n) defined in (6), and
the tensor slice at rangeV ℓ corresponding to depthdk, which
we denote bySdk

(V ℓ). This convolution at depthdk results
in Qr images, or equivalently, a matrix with vector entries,
each one havingQr coefficients, which we denote byY ′

dk,n
.

Note that similarly to the definition of a time window, which
sets the number of received images from a focal point, one
can also set a spatial window length, with dimension smaller
thanD1. However, in order to exploit full space and time di-
versity, we shall continue to assume a full spatial convolution

1The fact is that, in addition to the 1-D time convolution model for each
focal point, scanning at an arbitrary resolution rate yields overlapping of suc-
cessive blocks, which naturally characterizes a volumetric convolution be-
tween the object, and the space-varying tensor defined by thebeam pattern
for different focal points. The spatial model for this operation will depend on
the number directions and depths the beam is moved to, whereby, similarly to
a block processing in time, motion can induce a particular processing struc-
ture in space (e.g., block processing, with or without overlap). The overall
process is in general a 4-D MIMO space (time)-varying convolution model.
For instance, choosingD = (R1 +K1 −1)(R2 +K2 −1)(R3 +K3 −1)
implies scanning at the the spatial resolution{T0, T1, Tr}, and corresponds
to a complete 4-D MIMO (space-varying) convolution. On the other hand,
for the fastest scanning, we can pickD = R1R2R3/|detB| foci, and the
whole space is scanned with nonoverlapping blocks. This tells us that un-
like the unfocused scenario, or in case information received from around the
focal point is not sufficient for independent estimations ofeach block, fo-
cusing allows for further diversity; in this sense, resolution is unlimited, and
ultimately dictated by the desired spatial sampling ofS, and not only by the
sampling device. As a result, estimation must be accomplished jointly, after
data received from around all foci have been properly acquired.

model as well. We thus have

y
′

dk
(n) = vec(Y ′

dk,n
) (15)

= vec([ y′

r0,k
(n) y

′

r1,k
(n) · · · y

′

rD1−1,k
(n) ]),

(16)
so we can replace (7) by a more compact form as

ỹdk
(n) =

B−1∑

ℓ=0

Hdk (n− ℓ)vec(Sdk (V ℓ)) + V dk (n), (17)

whereHdk
(n− ℓ) is a two-level block banded matrix of size

Qr(R1 + K1 − 1)(R2 + K2 − 1) × R1R2, representing a
MIMO 2-D convolution. Defining

Sdk = [ vec(Sdk (V (B − 1))) · · · vec(Sdk (V )) vec(Sdk (0)) ]

Y dk = [ ỹdk
(N +B − 2) · · · ỹdk

(1) ỹdk
(0) ] (18)

and denotingX dk
= vec(Sdk

) and ȳ′
dk

= vec(Y dk
), we

have
ȳ
′

dk
= HdkX dk + vdk (19)

whereHdk
is aQr(N +B − 1)(R1 +K1 − 1)(R2 +K2 −

1)×R1R2B block toeplitz matrix, with block banded blocks.
The three-dimensional model (19) fully describes the far-field
transmission scenario for a single depth atd0 = ∞; we see
that while resolution is unlimited in cross-range, we are still
limited to estimateB out ofK3 images within the tensorS.

b) Depth Motion

The lateral scanning can be generally performed at several
depths, giving rise to a full 4-D convolution model. In other
words, (17) can be defined fork = 0, 1, . . . ,D2, whereD2 =
(R3 +K3 − 1), so that overallrj coversD = (R1 +K1 −
1)(R2 +K2 − 1)(R3 +K3 − 1) focal points. There is, how-
ever, a subtle difference in the way convolution is performed
in the axial direction. While the 2-D convolution sum can be
computed at the minimum resolution step{T1, T2}, the volu-
metric convolution is obtained by combining images at ranges
V ℓ, ℓ = 0, 1, . . . , B − 1, and at times0, 1, . . . , N + B − 1,
for each depthdk. LetCdk,c, with c = 0, 1, . . . , B − 1 be the
c-th block column ofHdk

and define

Y = [ ȳ′

d0
ȳ
′

d1
· · · ȳ

′

dD2−1
], (20)

X= [ vec(S(R3 − 1)) · · · vec(S(1)) vec(S(0)) ] (21)

Then, denotingy = vec(Y ) andx = vec(X), we write

y = Hx+ v (22)

whereH is now a 4-level block banded convolution matrix,
with dimensionsQr(N +B − 1)(R1 +K1 − 1)(R2 +K2 −
1)(R3 +K3 − 1)×BR1R2R3.

Again, we can proceed in finding an estimate of the reflec-
tivity tensorS in (22) via matrix inversion or LS, withHrj

replaced byH. Note that the tall full rank condition imposed
for separate blocks becomes much more relaxed in this case
due to the redundancy of reflectivity in adjacent blocks.
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4. PRELIMINARY EXPERIMENTS

We assume a free-space scenario where a beam pattern is gen-
erated by a 1m× 1m antenna with uniform tappering func-
tion and current density, producing two separablesinc func-
tionsb0(n) andb1(n). We estimate a tensor, with resolution
T1 = T2 = ∆min = 0.1. The pulse length isTp = 10−7,
and the carrier frequency is set tofc = 4 GHz. In theA-scan
imaging, the beam is swept over object, and for each received
signal, the estimator is computed based solely on the trans-
mitted pulse, while the beam pattern is usually designed in
order to minimize the blurring effect in this direction. In the
3D modeling, however, whatever the beam pattern in cross
range is, we make use of its shape when estimating along this
direction as well. Observe that a tall matrix can always be
induced by moving the beam over the object so as to perform
a complete spatial convolution. Hence, improved results may
be expected compared to the case ofA-scans.

We consider an 80×80 scene image 3(a) at a fixed range
and an SNR of 10dB, for a randomly generated pulse with
Gaussian samples. The optimal minimum-norm matrix in-
verse and 3D-LS estimation are illustrated in 3(b) and 4(c)
respectively. These can be compared with the corresponding
A-scan schemes in 4(d) and 5(e). We further compare these
recovered scenes with the ones obtained with a Chirp trans-
mission, in 6(a) and 6(b). We clearly see the effect of condi-
tioning in the matrix inverse solutions, and superiority ofthe
full convolution information based receivers

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

Fig. 3. (left) Original scene; (right) Optimal minimum norm
matrix inverse.
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Fig. 4. (left) 3D-LS solution; (right) Optimal minimum norm
matrix inverse forA-scan processing.

In this paper, we have presented preliminary simulations
considering the effect of the transmitted signal inA-scan and
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Fig. 5. 3D-LS solution forA-scan processing.
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Fig. 6. Chirp transmit pulse. (left) 3D-LS solution; (right)
Optimal minimum norm matrix inverse forA-scan process-
ing.

3D estimation scenarios. The behavior of equalizers are well
established in a 1D scenario, and the challenge in their im-
plementations lies in cases where the conditioning ofT , A0

andA1 becomes too high. A thorough comparison with other
methods in fair equivalent scenarios is still to be pursued in a
separate future work.
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