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ABSTRACT

This paper shows how the theory of recurrence related polynomials
is connected to the construction of covariance displacement oper-
ators and their diagonalization properties. It is demonstrated that
covariance Bezoutians admit a broader class of polynomial Vander-
monde based representations, and are not limited to factor circulants,
commonly seen in the literature. We show that there is sufficient
freedom in the choice of operators, such that more general eigen-
vector factorizations other than the DFT-based are possible. These
become key to achieving efficient matrix-vector multiplications re-
quired in signal processing and communications, as the ones arising
in modern multicarrier and frequency-domain equalization methods.

1. INTRODUCTION

Displacement theory is an attractive way to efficiently exploit struc-
ture when realizing mathematical formulas in signal processing and
communications. In [1], this concept is approached in view of ar-
bitrarily structured N ×M data matrices HM,N possessing a fixed
relation between two successive rows {uM,k} of HM,N , i.e.,

ŭM,N+1 = uM,NΨM . (1)

where ΨM is a structured matrix induced by the input network. In
this scenario, it is shown how the generating vectors of an M ×M
inverse covariance matrix PM,N,L = (Π−1 + H∗

M,NWHM,N)−1

are sequentially computed through an Extended Generalized Fast
Transversal Filter (EGSWFTF), in a causal manner, where Π is a
positive definite matrix and W provides a diagonal weighting as a
sliding window with a single breakpoint after L past samples (al-
though this can be extended to an arbitrary number of breakpoints)
and forgetting factor λ, as illustrated below:

η̄0 = 1

η̄1

0 N

λ < 1

L Past samples

Fig. 1. Generalized window.

The EGSWFTF is truly fast, as long as matrix-vector multiplications
of the form Ψ−1

M · x which arise in the algorithm for some vector x,
are efficiently as well. That is, although the recursions of [1], and
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consequently the displacement rank of PM,N,L are obtained regard-
less of ΨM , the EGSWFTF requires efficient multiplications with
Ψ−1
M , and requires that ΨM itself possesses a particular structure.

The same holds for P̆M,N,L, with respect to ŭM,N .
The way the operator is generated is crucial not only for com-

plexity reasons, but also for numerical stability when representing
these covariances. Applications include minimum-mean-square-
error (MMSE), least-squares (LS), or pure matrix inverse solutions
encountered in channel estimation and equalization scenarios, where
the data matrix is entirely known or estimated a priori [3]. In these
cases, the estimate assumes the form of a matrix-vector multipli-
cation PM,N,L · x, or simply H−1

M,N · y. An efficient, or compact
representation of PM,N,L is thus highly desirable, and as we shall
show in this work, it is obtained by solving its displacement equation
with respect to suitable operators {ΦM,θ , ΦM,ς}.

More specifically, I have recently shown in [1] that any data
structure such that (1) holds, induces displacement operators of the
general form ΦM,θ = ΨMZ−1

θ [or ΦM,θ = Z−1
θ ΨM with respect to

ŭM−1,N ], where Z−1
θ is a companion matrix, i.e.,

Zθ =











0 0 · · · 0 θ0
1 0 · · · 0 θ1
...

. . .
...

...
0 0 · · · 1 θM−1











. (2)

For example, tap-delay-line models allow us to choose the displace-
ment operators as companion matrices ΦM,θ = Z−1

θ and ΦM,ς =
Z−1
ς , giving rise to the so-called superfast O(M logpM) represen-

tations [2], where d ≤ 2. Efficiency in this case is a result of the
Vandermonde structure of their eigenvectors, so when its defining
nodes are equispaced on circles of radius, say, |φ0| and |%0|, these
matrices simply collapse to DFT filterbanks.

One way to achieving efficient realizations lies in the construc-
tion of operators induced by recurrence related polynomials, since
in this case, inversion or eigenvector factorization can be quickly
performed via fast or superfast realizations. Which recursion to
be employed (2-term, 3-term, etc.) will depend on the objective at
hand, usually targeting efficient realizations, compactness in model-
ing, and numerical robustness. For example, the choice of orthonor-
mal IIR basis leads to a shorter basis representation, while the degree
of freedom in the construction of the displacement operator further
allows for a specific eigenvector factorization of the inverse covari-
ance. I have shown that regardless of the input basis, the resulting
displacement operator can always be designed such that its eigenval-
ues are equispaced on a circle, which does not necessarily imply that
the corresponding Bezoutian (an inverse covariance) yields an effi-
cient eigenvector decomposition. That is, efficiency and numerical
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robustness may require the construction of operators with eigenval-
ues placed at arbitrary locations, as it may be desirable to use trans-
formations other than DFT-based [1]. Considering the aforemen-
tioned, in this paper we address the following fundamental questions
on structured inverse decompositions:

1) Is it possible to obtain inverse or inverse covariance representa-
tions based on arbitrary displacement operators?

2) How do we choose the input basis and the displacement operator,
in order to achieve a filterbank type, and more importantly, efficient
decompositions for MMSE or matrix inverse solutions?

3) Given that DFT based formulas can be interpreted as simply as a
DFT filterbank realization, it is only natural to ask whether exact de-
compositions based on other transforms are possible. For example,
can we obtain exact forms based on real transformations such as dis-
crete cosine and sine matrices, unlike the only existing DFT-based?

The answer to these questions is positive, and the core message
here, is that one is not required to search for a specific operator that
will lead to a low displacement-rank, and consequently to an efficient
representation of a certain inverse or inverse covariance, usually de-
sired in signal processing and communications applications. On the
contrary, in these contexts, it is rather the operator that acts on the
data, redefining its structure; in this sense, a low displacement rank
will hold regardless of the operator, and the relevant question here is
how one should pick a suitable basis that will induce an alternative
representation useful for a certain purpose.

2. DIAGONALIZATION OF CONFEDERATE MATRICES

Consider a transversal system realization illustrated in Fig. 2.

...

...
Q0(z) Q1(z) Q2(z)

d(N)

s(N)

QM−1(z)

w

y(N)

v(N)

Fig. 2. Transversal realization based on general basis functions.

There are numerous ways in which we can construct the poly-
nomial basis {Qm(z)}. They can be realized via two-terms, three-
terms, or generally, via M -term recurrence relations, each particular
one serving to a different purpose, including better numerical condi-
tioning, reduced computational complexity, compact representation
of models, and so on. In this section, we shall see how recurrence
relations lead to the solution of open problems and connections.

Thus, consider the realization of Fig. 3, which is obtained from
the (shifted) M -term recurrence relation

Q0(z) = 1 , Q1(z) = δ0z−1Q0(z) (3)

Qm(z) = (ām−2,m−1 + δm−1z−1)Qm−1(z) +
ām−3,m−1Qm−2(z) + . . . + ā0,m−1Q1(z)(4)

ῨM (z) = ψ0Q0(z)z−1 + · · · + ψM−1QM−1(z)z−1 (5)

for m = 0, 1, . . . ,M − 1. The (unshifted) polynomial ΥM (z) has
been referred to as the master polynomial associated to {Qm(z)} [4].

This results in the following upper triangular matrix ΨM of (1):

ΨM =





















δ0 ā01δ0 (ā12ā01 + ā02)δ0 · · · ψ0

0 δ1 ā12δ1 · · · ψ1

0 0 δ2 · · · ψ2
...

...
. . .

...
...

0 0 0
. . . ψM−2

0 0 0 ψM−1





















(6)

2.1. Relation between ΨM and the Confederate structure

For the M -term recurrence of (4), it can be verified that the ma-
trix Φ−1

M,θ = Ψ−1
M Zθ has a Hessenberg form, and has been referred

to as a confederate matrix associated to the system of polynomials
{Qm(z)} (see e.g., [5] and its references). The confederate matrix
has several useful properties, and in particular, its eigenvalues are
directly related to ῨM (z), which is a free polynomial (see next sec-
tion). It is defined, e.g., in [5] under the notation “HQ”, where the
role of the companion form Zθ is fixed, and associated to the coef-
ficients of the system transfer function G(z) (therein their definition
differs from ours with respect to its last column). Moreover, in [5],
this association is such that the highest polynomial order on the right
hand side of (4) is in terms of Qm−1(z), since in these references
only FIR basis functions are considered. Here, we further allow for
a first-order rational transfer function relating two successive basis
functions, so that an additional m-th order term may arise on the
r.h.s. of (4).

In [1], I have shown that whenever the displacement operator
ΦM,θ has equispaced eigenvalues on a circle, there exists a general
eigenvector representation for the covariance matrix PM,N,L which
follows from the solution of its displacement equation with respect
to the form ΦM,θ = Z−1

θ ΨM . One natural question is whether it
is possible to enforce this condition in general, and more impor-
tantly, realizing it in the context of the recurrence related polyno-
mials. The answer is positive, and further suggests that the free
structures of {Zθ , Zς} can be suitably chosen to construct operators
{ΦM,θ, ΦM,ς} with eigenvalues placed at any desired location.

2.2. Diagonalization of Polynomial Vandermonde Matrices and
Signal Flow Graph Connections

Consider the vector multiplication in (1). Since uM,N−1 is updated
to ŭM,N with only M operations through ΨM , it is obvious that ap-
plying the same structure to an arbitrary vector implies a one sample
filtering step through the same network that originated ΨM in first
place. Moreover, the inverse operation Ψ−1

M can be simply realized
by invoking dual realizations and its defining Horner-like polyno-
mials — see, e.g., [5]. This is a consequence of the well known
theory of realization of digital filters, which has been reemerged
more recently in the context of fast structured matrix operations and
factorizations. The procedure for obtaining the Horner-like poly-
nomials is realized by reversing the signal flow graph directions of
the original network, and identifying the Horner-like polynomials
R̃ = {R̃k(z−1)} as the partial transfer functions seen from the in-
put to the tap-delays inputs in the dual system. These dual polyno-
mials easily realize inverse, transposition and matrix factorizations
efficiently, and are paramount to the connections presented in this
work. Just like the original basis, the associated Horner-like poly-
nomials are computed through recurrences involving any number of
terms as well. In a more general case of theM -term recursion of (3),
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...

... ...

...

...

...

...

...

u0(N)

ā01 + δ1z
−1 ā12 + δ2z

−1

ψ1z
−1ψ0z

−1 ψ2z
−1

δ0z−1 ā23 + δ3z
−1

ψ3z
−1

ā02

ā03

ā0,M−1

ā13

ā14

ā1,M−1

āM−3,M−1

ā24

u1(N) u2(N) u3(N) u4(N) uM−1(N)

uM (N)

āM−2,M−1 + δM−1z
−1

ψ3z−1 ψMz−1

Fig. 3. M-term realization.

these satisfy the M -term relations

R̃0(z) = 1 , R1(z) = δ̃0φMz−1R0(z) (7)

R̃k(z) = (ãk−2,k−1 + δ̃k−1z−1)R̃k−1(z) +

ãk−3,k−1R̃k−2(z) + . . . + ã0,k−1R̃1(z) + φM−k

(8)
where {φM−k} are the coefficients of the master polynomial of or-
der M + 1, i.e.,

Υ̃M+1(z) = φ0Q0(z) + φ1Q1(z) + · · · + φMQM (z) (9)

with δ̃k = δM−k and ãk,j =
δM−j
δM−k

āM−j,M−k. In the monomial

case, these polynomials, denoted by P̃ = {h̃k(z)} are simply called
Horner polynomials, and satisfy the recursion

h̃k(z) = z−1h̃k−1(z) + φM−k , h̃0(z) = φM . (10)

We now establish the connection between these polynomials and
the associated displacement operators constructed along with the
companion structures {Zθ , Zς}.

Definition 1 (Polynomial Vandermonde Matrix and Inverse) Let
{z0, z1, . . . , zM−1} be M distinct numbers. Given the set of recur-
rence related bases Q = {Q0(z), Q1(z), . . . , ῨM (z)}, the corre-
sponding polynomial Vandermonde matrix is given by

VQ(z̄) =











Q0(z0) Q1(z0) · · · QM−1(z0)
Q0(z1) Q1(z1) · · · QM−1(z1)

...
...

. . .
...

Q0(zM−1) Q1(zM−1) · · · QM−1(zM−1)











.

(11)
Also, the so-called Horner-like polynomials Q̃ = {R̃k(z)} define its
inverse which is itself a polynomial matrix given by

V −1
Q (z̄) =

1
φM

R(z̄)DQ(z̄),

where

RQ(z̄) =











R̃M−1(z0) R̃M−1(z1) · · · R̃M−1(zM−1)
...

...
. . .

...
R̃1(z0) R̃1(z1) · · · R̃1(zM−1)
R̃0(z0) R̃0(z1) · · · R̃0(zM−1)











(12)

D(z) = diag(d−1
0 , . . . , d−1

M−1), with di =
M−1
∏

k=0
k 6=i

(z−1
k − z−1

i ).

(13)
The recurrence polynomial formulas described above have been

used to extend the Parker-Forney-Traub algorithm and the Björck-
Pereyra algorithm for computing inverse Vandermonde, to polyno-
mial Vandermonde inverses in several cases in O(M2) operations,
and more importantly, with excellent numerical precision, even for
extremely high condition numbers— see [6] and the references
therein for a summary of these works.

Lemma 1 (Rank-one displacement) Let Qm(z) satisfy the recur-

rence relation (3)-(5), and define Θ′(z) ∆=
∑M−1
m=0 θ

′
mQm(z) where

{θ′m} are associated with the companion matrix Zθ′ . Assume that
z0, . . . , zM−1 are M distinct numbers and define the m-th pinning

vector em
∆= [ 0 · · · 0 1 0 · · · 0 ]T . Then,

VQ(z̄)ΨM − ΛzVQ(z̄) = Λz̄`(z̄)e0 (14)

where VQ(z̄) is the polynomial Vandermonde defined in (11), and

`(z̄) = 1
θ′0

[

ῨM (z0)−Θ′(z0) · · · ῨM (zM−1)−Θ′(zM−1)
]T

.

Proof: The recurrence equations in (3)-(5) can be written as

[

Q0(z) Q1(z) · · · QM−1(z)
]

ΨM = (15)

z
[

Q1(z) Q2(z) · · · ῨM (z)
]

= z
([

Q0(z) Q1(z) · · · QM−1(z)
]

Zθ′

+
[

ῨM (z)−Θ′(z)
]

e∗
M−1

)

=
[

Q1(z) Q2(z) · · · Θ′(z)
]

Z−1
θ′ ΨM

=
([

Q1(z) Q2(z) · · · ῨM (z)
]

−
[

ῨM (z)−Θ′(z)
]

e∗
M−1

)

Z−1
θ′ ΨM (16)

so that for M distinct numbers z0, . . . , zM−1, we obtain (14).

Corollary (Diagonalization of operators from recurrence poly-
nomials) Let {z̄i} be a zero of ΥM (zi)−Θ′(zi),m = 0, . . . ,M−1,
and pick θ′i = θi in (16), so that Zθ′ = Zθ and Θ(z) = Θ′(z).
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Then, the operators ΦM,θ and Φ̆M,θ admit the Jordan factorizations

ΦM,θ
∆= ΨMZ−1

θ = V −1
Q (z̄)Λz̄VQ(z̄) (17)

Φ̆M,θ
∆= Z−1

θ ΨM = V̆ −1
Q (z̄)Λz̄V̆Q(z̄) (18)

where

V̆Q(z̄) =











Q1(z0) Q2(z0) · · · ῨM (z0)
Q1(z1) Q2(z1) · · · ῨM (z1)

...
...

. . .
...

Q1(zM−1) Q2(zM−1) · · · ῨM (zM−1)











, and

(19)
{z̄i} are the eigenvalues of ΦM,θ satisfying the (scaled) character-

istic polynomial ΩM,θ(z)
∆= ῨM (z)−Θ(z). Moreover, Ω(z̄i) = 0

can be solved for ψ in terms of θ or vice-versa via (17) as

ψ = V −1
Q (z̄)Λz̄Θ(z̄) or θ = V −1

Q (z̄)Λ−1
z̄ ΥM (z̄). (20)

or according to (18) as

ψ = ZθV̆ −1
Q (z̄)Λz̄ΥM (z̄) or θ = ΨM V̆ −1

Q (z̄)Λ−1
z̄ ῨM (z̄).

(21)
Proof: From (16), it is easy to verify that ΨMZ−1

θ = ΦM,θ =
V −1
Q (z̄)Λz,θVQ(z̄)Zθ′Z−1

θ so that choosing θ′ = θ yields (17), and
(20) follows. The same argument applies when ΦM,θ is defined as
Z−1
θ ΨM instead, leading to (18) and consequently to (21).

Equations (20) and (21) guarantee that the Bezoutian represen-
tation in Theorem 1 of [1] is indeed feasible, since it allows for the
construction of operators ΦM,θ having eigenvalues equispaced on a
circle. The eigenvector matrices can be associated to a Vandermonde
polyphase matrix of filterbank architecture, and therefore designed
according to different criteria. Different nodes will lead to different
designs for these matrices; As a consequence, one can expect that
analogous representations based on other efficient filterbank designs
are possible. This is to be further elaborated next.

3. VANDERMONDE REPRESENTATION FROM
HESSENBERG BASED DISPLACEMENTS

In the previous sections, we showed that the construction of poly-
nomial Vandermonde based representations is possible via proper
choices for the “free” polynomials ΥM (z) and Θ(z), which in turn
define the operator ΦM,θ . While efficient superfast O(M logM)
DFT filterbanks are easily obtained from a Vandermonde based
representation, with nodes equispaced on circles, it is natural to
ask whether other bases yield superfast decompositions as well.
For instance, it is widely known that proper choice of the nodes
in polynomial Vandermonde matrices lead to efficient DST and
DST realizations, which provide perfect numerical conditioning in
signal processing applications (see, e.g., [7]). Similar characteris-
tics are obtained through Szego-Vandermonde operators, which are
unitary (or almost unitary) and also highly desirable for practical
purposes. These are missing connections which have been open for
a while and which constitute the central result of this paper.

In [1], I have obtained the displacement equation for the Ricatti
variable P̆M,N,L in connection with its defining fast Kalman recur-
sion variables as

∇{Φ̆M,θ,Φ̆∗
M,ς}

(P̆M,N,L)
∆= P̆M,N,L − λ−1Φ̆M,θP̆M,N,LΦ̆∗

M,ς

= λN−2Φ̆M,θ
¯̆kdoM,N

¯̆kdo∗M,N Φ̆
∗
M,ς + w̄bM−1,N,Lw̄

b∗
M−1,N,L

− λ−1Z−1
θ w̄fM−1,N−1,Lw̄

f∗
M−1,N−1,LZ

−∗
ς

− λ−1k̃dM−1,N−1,L−1k̃
d∗
M−1,N−1,L−1 − k̃M−1,N,Lk̃∗M−1,N,L

(22)

with w̄bM−1,N,L, w̄
f
M−1,N−1,L,

¯̆kdoM,N , k̃M−1,N,L, k̃dM−1,N−1,L−1
corresponding to normalized backward and forward prediction vec-
tors, and Kalman gains associated to the 3 breakpoints in data, i.e.,
at 0, L0, and L1 (see Fig. 1). By solving (22), we arrive at the
following main result (as an abuse of notation, we shall denote by
1/z̄ the entrywise inversion of the vector z̄):

Theorem 1 (Polynomial Vandermonde Representation of Co-
variance Bezoutians) Let P̆M,N,L be a covariance matrix arising in
a generalized window LS formulation for an arbitrary recurrence re-
lated polynomial basis {Qk(z)}. Let z̄1 = [z1(0) · · · z1(M−1)]T

be the distinct eigenvalues of Φ̆M,θ
∆= Z−1

θ ΨM satisfying the char-
acteristic polynomial ΩM,θ(z). Also, given ΥM (z̄1) and the nodes
z̄1, define the following corresponding matrix-valued polynomial:

Ω̄θ(Φ̄M,θ) = φ0I +
M
∑

m=1

λ1/2φ̄mΦ̄−m
M,θ (23)

with θ = ΨMV −1
Q (z̄1)Λ−1

z̄1 QM−1(z̄1), (24)

as well as its slightly changed version,

Ω̄′
θ(Φ̄M,θ) = %0I +

M
∑

m=1

λ1/2φ̄mΦ̄−m
M,θ (25)

obtained by replacing φ0 with another arbitrary scale %0. Set z̄2 =

[z2(0) z2(1) · · · z2(M − 1)]
T

, such that z̄∗1(m)z̄2(m) 6= 1,
{z̄1, z̄2} ∈ C, and let {V̆Q(z̄1), V̆Q(z̄2)} be the eigenvector matrices
corresponding to {Φ̆M,θ , Φ̆M,ς} respectively. Then, if Ω̄θ(Λ−∗

z̄2 ) 6=
0, P̆M,N,L can be decomposed as

P̆M,N,L = V̆ −1
Q (z̄1)

[

ΛV1,k̃VP(z̄1)RP(1/z̄∗2 )Λ
∗
V2,k̃

− ΛV1,¯̆kdoVP(z̄1)RP(1/z̄∗2 )Λ
∗
V2,

¯̆kdo

+ ΛV1,w̄f VP(z̄1)RP(1/z̄∗2)Λ
∗
V2,w̄f

− ΛV1,w̄bVP(z̄1)RP(1/z̄∗2)Λ
∗
V2,w̄b

+ ΛV1,k̃dVP(z̄1)RP(1/z̄∗2)Λ
∗
V2,k̃d

]

·

Ω̄−1
θ (Λ−∗

z̄2 )V̆ −∗
Q (z̄2) (26)

where RP(1/z̄∗2) is the dual polynomial matrix of (12) with respect
toΩM,θ(z) and ΛV1,¯̆kdo = diag(q¯̆kdo ,θ), ΛV2,¯̆kdo = diag(q¯̆kdo ,ς),
ΛV1,w̄f = diag(qf,θ), ΛV2,w̄f = diag(qf,ς) ΛV1,w̄b = diag(qb,θ),
ΛV2,w̄b = diag(qb,ς),ΛV1 ,k̃d = diag(qk̃d,θ)ΛV2,k̃d = diag(qk̃d,ς)
ΛV1,k̃ = diag(qk̃,θ), ΛV2,k̃ = diag(qk̃,ς) and where we define the
frequency-domain vectors

q¯̆kdo ,θ = λ(N−2)/2V̆Q(z̄1)
¯̆kdoM,N , (27)

qf,θ = λ−1/2Λ−1
z̄1 V̆Q(z̄1)Z−1

θ w̄fM−1,N−1,L, (28)

qb,θ = Λ−1
z̄1 V̆Q(z̄1)w̄bM−1,N,L, (29)

qk̃d,θ = λ−1/2Λ−1
z̄1 V̆Q(z̄1)k̃dM−1,N,L−1, (30)

qk̃,θ = Λ−1
z̄1 V̆Q(z̄1)k̃M−1,N,L, (31)

with analogous definitions with respect to {V̆Q(z̄2), Λz̄2 , Zς}.

The above result requires a long proof and we shall omit it here due
to space limitations.
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-

-

I#H∗
0

v

Toeplitz-like
linear model

x

Any transmission scheme which
induces a Toeplitz-like structure —-

• Reduced redundancy block linear schemes
• Reduced redundancy block DFE schemes

Straightforward examples include:

Fig. 4. SC-FD-MMSE Decomposition. For compactness of notation, we denote V̆Q,z̄1
∆= V̆Q(1/z̄1), V̆Q,z̄∗2

∆= V̆Q(1/z̄∗2), ΛVi,bk,θ
∆= Λi,k,θ ,

and similarly to Λ̃Vi,bk,θ and the same variables with dependency on ς .

4. APPLICATION TO BLOCK EQUALIZATION

Consider the linear model y = H0x + vi, with H0 a tall Toeplitz-
like matrix, which can represent a hybrid zero-padding/discarding
scheme [8]. The LS estimate of s is given by x̂ = KLSy, where

KLS = (Π−1 +H∗
0H0)−1H∗

0 = B∗
Q(εI +H∗

BHB)−1BQH∗
0

(32)
where HB = H0B∗

Q, with BQ representing a change of basis ma-
trix, and ε is a scalar inverse signal-to-noise ratio. Using (33) into
(32), we obtain the general receiver realization illustrated in Fig. 4.
Observe that multiplication with H0 is performed separately.

Now, in view of (25), assume that we choose z̄2 = 1/z̄′1, in
a way that the coefficients of the M highest powers of Ω̄M,θ(z)
and Ω̄′

M,θ(z) coincide. This gives Ω̄θ(Φ̄−∗
M,ς) = (%∗0 − φ0)I , and

RP(1/z̄∗2) = V −1
P (1/z̄∗2 )D−1(1/z̄∗2). After some algebra, noting

that VQ(z) is obtained from VP(z) through a change of basis, i.e.,
VP(z) = VQ(z)B−∗

Q , and similarly, V̆P(z) = V̆Q(z)B̆−∗
Q , we can

conclude that VQ(z̄2) = Λ−(M−1)
z̄2 VQ(1/z̄2)B−∗

Q I#B∗
Q, where I#

reverses the entries (columns) of a vector (matrix). Hence (26) re-
sults in

P̆M,N,L=
φM

(φ0 − %∗
0)

4
∑

k=1

ιkV̆ −1
Q (z̄1)ΛV1,bk,θVQ(z̄1)V −1

Q (1/z̄∗2)

· Λ̃∗
V2,bk,ς

V̆ −∗
Q (1/z̄2)BQI#B−1

Q

(33)
where Λ̃∗

V2,bk,ς
= D−1(1/z̄∗2)Λ∗

V2,bk,ς
Λ(M−1)∗
z̄2 , and φ0 6= %∗0.

We see that the well known DFT-representation is just a spe-
cial case of the above formula, considering the zeros of the master
polynomials Ω̄θ(z) = φ0 + z−M , and Ω̄′

θ(z) = %0 + z−M cal-
culated at {z̄1, 1/z̄∗2}. That is, in the latter, z̄1(m) = φej

2πm
M ,

where φ = |φ0|−1/Mej
∠−φ−1

0
M , and z̄2(m) = %ej

2πm
M , where

% = |%0|1/Mej
∠−%0

M . This results in the DFT filterbanks VP(z̄1) =√
MFDφ, VP(z̄2) =

√
MFD%, VP(1/z̄∗2) =

√
MFD1/%∗ , and

D−1(1/z̄∗2) =M%∗(M−1)diag
(

ej
2πm
M |M−1

m=0

)

, which leads to

P̆M,N,L =
D1/φF ∗

(φ0 − %∗0)

4
∑

k=1

ιkΛV1,bk,θFDφ%∗F
∗Λ̃∗

V2,bk,ς
FD1/%∗

where Λ̃V2,bk,ς = %(M−1)ΛV2,bk,ς diag
(

e−j
2πm
M |M−1

m=0

)

. Alterna-

tively, we can factor D−1(1/z̄∗2)/M into the definition of ΛV2,bk,ς

itself, in which case the above expression collapses to the one ob-
tained in (87) of [1], specialized for tap-delay-line models.

The generality of this decomposition provides a solution to our
third initial question; that is, since it is well known that Cheby-
shev polynomials of the first and second kind yield the so-called
Chebyshev-Vandermonde matrices, it can be verified that choosing
the nodes {z̄i} as the roots of QM (z), along with border polyno-
mial ΥM (z) = QM−1(z), these become essentially different ver-
sions of the DCT or DST matrices [7], and some algebra will lead to
such real representations. Due to the simple recurrence relation that
yields the Chebyshev basis, multiplication of BQ or B∗

Q by a vector
is as efficient as the tap-delay line network, since there is actually no
multiplication inherent to these operations (just adds and shifts).

5. CONCLUSION

Our results show how the choice of free companion structures along
with recurrence related basis representations yields an exact poly-
nomial Vandermonde based decomposition, from the solution of the
corresponding displacement equation of inverse covariances.

The above framework can be easily applied in a multicarrier
scheme, and holds similarly for pure block zero forcing equaliz-
ers requiring only 2 receive branches with optimized redundancy.
Moreover, such general decomposition is straightforwardly applied
to reduced redundancy block decision feedback schemes, which also
yield superfast receivers. We remark that in a multicarrier context,
a proper power loading scheme must be taken into consideration,
since the change of basis may represent significant increase in the
conditioning of the transmitted signals.
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