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ABSTRACT

The problem is joint detection and tracking of a non-point
or extended moving object, characterised by multiple feature
points which can result in detections. Due to imperfect de-
tection, only some of the feature points are detected and in
addition false alarms (or clutter) can also be present. Stan-
dard tracking techniques assume point objects, that is at most
one detection per object, and hence are not adequate for this
problem. The paper presents a theoretical solution in the form
of the optimal Bayes filter, referred to as the Bernoulli filter
for an extended object. The derivation follows the random set
filtering framework introduced by Mahler. The filter is im-
plemented approximately as a particle filter and subsequently
tested using simulated data.

Index Terms— Tracking, extended object, random set
theory, Bayes filtering

1. INTRODUCTION

Conventional tracking algorithms [1], historically developed
for radar/sonar applications, assume that targets (moving ob-
jects) are points in the state space which result in at most
one detection (measurement or observation) per target. This
assumption is not appropriate for sensors, such as the high
resolution radar or a video camera, where individual features
(scattering or measurement generating points) of the target
can be resolved and consequently the sensor can providemore
than one detection per object. The problem of tracking ex-
tended objects has therefore attracted a lot of interest in the
last decade, see [2, 3, 4, 5].
Among various approaches to extended target tracking, in

this paper we are primarily interested in those based on the
random set theory [6]. This theory has recently made a pro-
found impact on the theoretical developments of sequential
Bayesian estimation. As a result, the scope of applications of
optimal nonlinear filtering has shifted from a single to multi-
ple appearing/disappearing objects, from precise to imprecise
and fuzzy measurements and measurement models.
Using the Poisson model of extended object detections

[7], Mahler formulated the probability density hypothesis
(PHD) filter for tracking multiple extended objects [8]. The

cardinalised PHD (CPHD) filter for extended targets has been
subsequently proposed in [9]. Both the PHD and CPHD filters
for multiple extended object filtering are notoriously compu-
tationally intensive and perform poorly at a low probability of
detection. A different approach was taken in [10]: the prob-
lem was formulated in the framework of doubly-stochastic
point process theory, with analytic solution provided as the
first order moment approximation. The filter in [10] provides
sequential estimate of individual feature points but is limited
to a single extended object which exists all the time.
In this paper we take yet another approach in the ran-

dom set theoretical framework. We formulate the optimal
Bayesian filter for joint detection and state estimation of an
extended appearing/disappearing object in the presence of
clutter. The solution is the Bernoulli filter (also known as
JoTT filter) [6], [11], [12], [13] formulation for an extended
object detection and tracking, which, as opposed to other
mentioned approaches, is optimal. Its implementation, how-
ever, is based on the sequential Monte Carlo approximation,
and the resulting algorithm will be referred to as the Bernoulli
particle filter in the text. The main characteristic of the pro-
posed Bernoulli filter is that it estimates jointly the probability
of object existence and the spatial posterior probability den-
sity function (PDF) of the extended object. The probability
of existence is important in determining the presence or ab-
sence of the object from the scene. The proposed Bernoulli
filter does not estimate individual feature points and therefore
is computationally tractable, as it will be demonstrated by
numerical examples.

2. MATHEMATICAL MODELS

Consider an extended object whose characteristics of interest,
such as position, heading, speed, shape and orientation pa-
rameters, are specified by the state vector xk ∈ X , where k is
the discrete-time index and X is the state space. The evolu-
tion of target state in time is assumed to be a Markov process
with transition density π(xk|xk−1). In order to model the dy-
namics of object presence or absence from the surveillance
volume of interest, we introduce a binary random variable
εk ∈ {0, 1}, referred to as the target existence (the adopted
convention is that εk = 1 means that target exists at time k).
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The dynamics of εk is modelled by a two-state Markov chain
with a transitional probability matrix (TPM)Π. The elements
of the TPM are defined as [Π]ij = P{εk+1 = j − 1|εk =
i − 1} for i, j ∈ {1, 2}. We adopt a TPM as follows:

Π =

[
(1 − pb) pb

(1 − ps) ps

]
(1)

where pb := P{εk+1 = 1|εk = 0} is the probability of tar-
get “birth”and ps := P{εk+1 = 1|εk = 1} the probability
of target “survival”. These two probabilities together with the
initial target existence probability q0 = P{ε0 = 1} are as-
sumed known. Typically q0 = 0, pb is small and ps is close
to 1.
The extended object measurement model is adopted from

[6, Sec. 12.7.1]. The assumption is that at time k, the ob-
ject consists of Lk scattering (feature or measurement gener-
ating) points. Each of these points is specified by the state
y�

k ∈ Y , with � = 1, . . . , Lk. The state space of scatter-
ing points Y ⊂ X , because it includes only characteristics
such as position, heading and speed, but not the shape, size
or orientation parameters. The probability of detection of a
scattering point � = 1, . . . , Lk is assumed state independent
and denoted by p�

D (the state dependent case can be easily han-
dled, but is omitted here for clarity). Let Zk = {z1, . . . , zm}
denote the set of detections or measurements, collected by
the sensor at time k. The measurement space is denoted Z .
The set Zk contains both the object generated measurements
and false measurements (clutter). If a scattering point of an
extended object in state x is detected and results in a mea-
surement z ∈ Zk, then its likelihood function is denoted by
gk(z|x). The false detections are assumed independent of the
object state. Their count at time k is modelled by a Poisson
distributionwith mean λ. Their spatial distribution is assumed
known and denoted by c(z).
In order to write down the likelihood function of the ex-

tended object under the described assumptions it is convenient
to introduce the concept of a random finite set (RFS) and its
probability density function [6]. A RFS is a probabilistic rep-
resentation of spatial point patterns that accounts for uncer-
tainty in both the number of elements (points) in the set and
the spatial locations of the points over the state space. A RFS
Σ is therefore completely specified by a discrete distribution
that characterises the cardinality ofΣ and a joint spatial distri-
bution of points inΣ conditional on cardinality. The probabil-
ity density function (PDF) f(Σ) of a RFS Σ = {s1, . . . , sn},
n ≥ 0, is integrated using the set integral [6].
The measurement set Zk can clearly be modelled by a

RFS: both its cardinality and the spatial distribution of mea-
surement points in Z are random. Moreover, even the (ex-
tended) object of interest can be modelled by a random finite
set Xk, which can be either empty (when target is absent,
Xk = ∅) or contain a single element (when target is present,
Xk = {xk}). This type of a RFS, which can be either empty
or a singleton, is referred to as the Bernoulli RFS [6].

The likelihood function of the extended object has been
specified in [6, Sec. 12.7.1]. This expression can be simpli-
fied due to the lack of knowledge about individual scattering
points. Suppose for all of them the probability of detection is
p�
D = pD, � = 1, . . . , Lk. Then the likelihood function is given
by:

ϕk(Z|{x}) =κ(Z)
{

(1 − pD)
Lk+∑

Ω∈P1:L
k
(Z)

p
|Ω|
D (1 − pD)

Lk−|Ω|
∏
z∈Ω

gk(z|x)

λ c(z)

}
(2)

where κ(Z) = ϕk(Z|∅) = e−λλ|Z|
∏

z∈Z
c(z) is the PDF of

the Poisson RFS of false detections, and P1:L(Z) is the set of
all subsets of the measurement set Z, with cardinality equal
to 1, 2, . . . , L.
The potential difficulty with expression (2) for the like-

lihood function of an extended object is that Lk is unknown
and not included it in the state vector xk . We will show later
that Lk can be estimated impact in Sec.5.

3. BERNOULLI FILTER EQUATIONS

Suppose the posterior PDF of extended object at time k is
available and denoted fk|k(X|Z1:k), where

Z1:k ≡ Z1,Z2, . . . ,Zk

is the sequence of measurement sets collected up to time k.
The Bayes filter propagates the posterior PDF sequentially
over time, as the new sets of measurements become available.
The extended object stateXk can be modelled by a Bernoulli
RFS, for which the posterior PDF has the form [6]:

fk|k(X|Z1:k) =

⎧⎪⎨⎪⎩
1 − qk|k ifX = ∅

qk|k · sk|k(x) ifX = {x}

0 if |X| > 1

(3)

where

• qk|k = P{εk = 1|Z1:k} is the posterior probability of
object existence;

• sk|k(x) = pk(x|Z1:k) is the posterior PDF over the
state space X (the spatial posterior PDF).

The Bernoulli filter is completely specified by the pair(
qk|k, sk|k(x)

)
and next we formulate the prediction and

update equations for these two quantities.
Since the state vector does not include individual scatter-

ing points, the prediction equations are identical to those of
the standard Bernoulli filter. According to [6, Sec.14.7], the
prediction from time k − 1 to k is carried out as follows:

qk|k−1 = pb · (1 − qk−1|k−1) + ps · qk−1|k−1 (4)
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sk|k−1(x) =

pb · (1 − qk−1|k−1)
∫

πk|k−1(x|x
′) bk−1(x

′) dx′

qk|k−1
+

ps qk−1|k−1

∫
πk|k−1(x|x

′) sk−1|k−1(x
′) dx′

qk|k−1
(5)

The density bk−1(x) in (5) represents the spatial distribution
of “target birth”. It is typically implemented in an adaptive
manner using prior knowledge and the measurement set from
the previous scan (i.e. Zk−1).
We next present the update equations of the Bernoulli fil-

ter for an extended object. The derivation is omitted due to
the lack of space. The update equation for the probability of
existence is given by:

qk|k =
1 − ∆k

1 − ∆k qk|k−1
qk|k−1 (6)

where

∆k = 1 − (1 − pD)
Lk−

∑
Ω∈P1:L

k
(Zk)

p
|Ω|
D

(1 − pD)|Ω|−Lk

∫ ∏
z∈Ω

g(z|x) · sk|k−1(x) dx∏
z∈Ω

λ c(z)
.

(7)

The update equation for the spatial posterior PDF is given by:

sk|k(x) =
[ (1 − pD)

Lk

1 − ∆k

+∑
Ω∈P1:L

k
(Zk)

p
|Ω|
D

(1−pD)|Ω|−L
k

∏
z∈Ω

gk(z|x)
λ c(z)

1 − ∆k

]
sk|k−1(x).

(8)

It can be easily verified that by setting Lk = 1, eqs. (7) and
(8) simplify to

∆k = pD

(
1 −

∑
z∈Zk

∫
g(z|x) · sk|k−1(x) dx

λ c(z)

)
(9)

and

sk+1|k+1(x) =

1 − pD + pD

∑
z∈Zk+1

gk+1(z|x)
λc(z)

1 − ∆k+1
sk+1|k(x)

(10)
respectively. Equations (9) and (10) are well known for the
standard (point-target) Bernoulli filter [6, Sec.14.7.4],[13].

4. IMPLEMENTATION

The numerical implementation of the proposed Bernoulli fil-
ter for joint detection/tracking of an extended object is based

on approximations. The spatial PDF sk|k(x) is approxi-
mated by a set ofN weighted random samples (i.e. particles)
{wi

k|k,xi
k|k}

N
i=1, where xi

k|k is the state of particle i and wi
k|k

is its corresponding weight. The weights are normalised, i.e.∑N

i=1 wi
k|k = 1. The approximation of sk|k(x) can then be

written as

sk|k(x) ≈
N∑

i=1

wi
k|k δxi

k|k
(x) (11)

where δa(x) is the Dirac delta function concentrated at a. The
prediction and update of both qk|k and sk|k(x) are then imple-
mented in a similar manner as in the standard (point target)
Bernoulli particle filter, which is described in detail in [13].
The main difference is that: (1) the so called “birth” particles
are formed based on every subset Ω ∈ P1:Lk−1

(Zk−1); (2)
the weights of particles are updated according to (8) as:

wi
k|k ∝

[
(1 − pD)

Lk+∑
Ω∈P1:L

k
(Zk)

p
|Ω|
D

(1 − pD)|Ω|−Lk

∏
z∈Ω

gk(z|x)

λ c(z)

]
· wi

k|k−1

(12)

After normalisation of weights, the particles are resampled
N times to obtain a new set of equally weighted particles
{ 1

N
,xi

k|k}
N
i=1 which approximate sk|k(x).

SinceLk is unknown and not included it in the state vector
xk, it is estimated as follows:

L̂k = min
{[ |Zk| − λ

pD

]
, L∗

}
(13)

where [·] denotes for the nearest integer operation and param-
eter L∗ ∈ N is adopted as a trade-off between the computa-
tional speed and accuracy. In general, the estimate L̂k will
differ to some degree from the true value of Lk. However,
we will see in the next section that a small error in estima-
tion of Lk, is not critical because the relative ranking of the
particle weights is almost unaffected by this error. Since the
weights are normalised in the particle filter, only their ratio is
important for survival in the resampling step.
The last approximation involves gating of measurements,

that is the selection of a subset Z∗
k ⊆ Zk which has a rea-

sonable chance of being due to the target. A measurement
z ∈ Zk will be included in Z∗

k if
∑

i{gk(z|xi
k|k−1)} > η,

where η ≥ 0 is a user specified threshold. The update step of
the Bernoulli filter is in practice carried out using Z∗

k, rather
than Zk , in order to speed up the computation.

5. SIMULATION RESULTS

Consider a two-dimensional surveillance area in the Carte-
sian coordinates, specified by the lower-left corner (0, 0) and
upper-right corner (500, 300). The extended target is of a
Gaussian shape, specified by the mean (centroid)µ = [x, y]ᵀ,

1201



its velocity vector v = [ẋ, ẏ]ᵀ and the ellipsoidal shape de-
fined by parameters σ = [a, b, c]ᵀ which define the elements
of the corresponding covariance matrix (a and b are diagonal
elements). Hence the state vector consists of 7 components:
x = [µᵀ vᵀ

σ
ᵀ]ᵀ. The target in state µ = [180, 0]ᵀ, v =

[4, 4]ᵀ and σ = [60, 30, −5]ᵀ enters the surveillance area
at k = 5 and leaves the area at k = 72. Its dynamics is de-
scribed by the transitional density π(x|x′) = N (x;Fx′,Q),
where F and Q are selected so that the centroid of the target
travels with the nearly constant velocity [14]. The shape pa-
rameter vector is modelled by a random walk [14]. Fig.1.(c)
shows a typical trajectory of the target centroid. The true
number of scattering points Lk initially is 5 and then drop
to 4. The probability of scattering point detection is set to
pD = 0.6, while the likelihood gk(z|x) = N (z; µ,S), where

S =

[
a c

c b

]
. The false detections are uniformly distributed

over the surveillance area with average count λ = 5.
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Fig. 1. A single run of the algorithm: (a) Posterior probability
of existence qk|k; (b) All detections, true (dashed line) and
estimated (solid line) centroid trajectories; overlayed target
shapes at k = 20, 35, 55, 70, 80, 90: true (dashed line) and
estimated (solid line)

The results of a single run of the proposed Bernoulli par-

ticle filter (BPF) are shown in Fig.1. The BPF was imple-
mented using Nb = 100 and N = 5000 particles, with the
gating threshold η = 100 and L∗ = 7. The probability qk|k

in Fig.1.(a) determines with a small delay the presence of the
object at about k = 10. It reliably stays at a very high value,
almost equal to 1, until, again with a small delay, determines
the that the objects has disappeared at about k = 75. The true
and estimated trajectories of the target centroid are shown in
Fig.1.(b). The estimates of the extended target are shown in
Fig.1.(c) at k = 20, 31, 42 and 53. We notice a remarkable ac-
curacy in estimating both the centroid and the size/orientation
of the object. As we have anticipated in Sec.4, the error in the
estimation of Lk does not appear to have a significant effect
on the performance of the Bernoulli filter.
Next we analyse the error performance of the BPF using

the optimal subpattern (OSPA) error [15]. The OSPA error is
a proper metric between two sets of objects (i.e. the ground
truth versus the estimate from the BPF) which penalises both
the cardinality error (e.g. target present but not detected) and
the error in the state space.
Suppose at time k the true object state is Xk, while the

estimated state is X̂k. Since the sets Xk and X̂k can be ei-
ther empty or singletons Xk = {xk} and X̂k = {x̂k}, the
definition of OSPA error from [15] simplifies to:

D(Xk, X̂k) =

⎧⎪⎨⎪⎩
min{c, d(xk, x̂k)} Xk={xk}, X̂k={x̂k}

c |X| 	= |X̂k|

0 Xk = X̂k = ∅
(14)

where c is referred to as the cut-off parameter and d(xk, x̂k)
is the base distance defined overX . We consider two cases of
OSPA error. In the first case, the base distance is defined as
the Euclidian distance between the location of the true object
centroid µk and its estimate µ̂k: d1(xk, x̂k) =‖ µk − µ̂k ‖.
This is referred to as the centroid localisation OSPA error,
and its cut-off parameter is adopted as c1 = 10. In the second
case, the base distance is defined as the Euclidian distance be-
tween the shape/size parameters: σk (true) and σ̂k (estimate):
d2(xk, x̂k) =‖ σk − σ̂k ‖. This is referred to as shape/size
OSPA error and its cut-off parameter is adopted as c2 = 60.
The two OSPA errors were averaged over 100 indepen-

dent Monte Carlo runs and shown in Fig.2. The true object
trajectory and shape/size was created with zero process noise
(i.e. identical in each run), with the target present from k = 5
to k = 78. The results are computed for different values of
L∗, that is L∗ = 1, 3, 5, 7.
According to Fig.2, initially, in the absence of the target,

the OSPA errors are zero. Then at k = 5, when the target
appears, both the localisation and size/shape mean OSPA er-
rors jump to the their respective cut-off values, due to a delay
in track formation. Subsequently both OSPA errors reduce as
the base distance component becomes the dominant source of
error. The errors during this interval are reduced due to the
BPF convergence. Then at time k = 78, the errors jump back
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to their respective cut-off values, as a result of a delay in track
termination. Eventually from k = 88 onwards both OSPA
errors are zero again.
Regarding the the centroid localisation mean OSPA error

in Fig.2.(a), one can observe that the choice of L∗ > 0 does
not seem to make a difference. This is a remarkable result, be-
cause the BPF at L∗ = 1 reduces to the standard point-target
BPF, characterised by a linear computational complexity with
the number of measurements. Based on Fig.2.(a) we conclude
that if one is interested only in the extended object centroid
estimate, then it is adequate to use the standard point-target
BPF (i.e. L∗ = 1).
The shape/size mean OSPA error in Fig.2.(b), however,

reveals that the choice ofL∗ > 0 can play a role in the estima-
tion of object shape/size parameters. It appears that adopting
L∗ = 3, 5, 7 the BPF produces similarly accurate estimates
of size/shape parameters. The size/shape estimates obtained
using L∗ = 1, however, were significantly less inaccurate.
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Fig. 2. Mean OSPA error using L∗
= 1, 3, 5, 7: (a) object centroid locali-

sation (b) object size/shape

6. CONCLUSIONS

The paper formulated the optimal Bayes filter for joint de-
tection and tracking of an extended object in the presence of
false detections. The implemented filter, referred to as the

Bernoulli particle filter, is an approximation based on the se-
quential Monte Carlo method. The numerical analysis in-
dicates that the BPF is accurate in both object centroid and
size/shape estimation. If one is concerned only with centroid
estimation, it is adequate to use the standard (point-object)
BPF.
The BPF has been applied to tracking objects using corner

detections in a video sequence, but the results are not included
here due to the limited space.
Future work will formulate a multi-object version of this

algorithm in the form of a multi-Bernoulli tracker for ex-
tended targets. This will be carried out by inclusion of a suit-
able data association technique as discussed in [16].
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