
GENERALIZED NON-LOCAL MEANS FOR ITERATIVE DENOISING

Enming Luoa, Shengjun Panb, Truong Nguyena

University of California, San Diego
aDepartment of Electrical and Computer Engineering
bDepartment of Computer Science and Engineering

{eluo, s1pan, tqn001}@ucsd.edu

ABSTRACT

Non-local means (NL-means) filter removes independent
and identically distributed (i.i.d.) image noises using self-
similarity. In this paper, we derive a generalized NL-
means (GNL-means), which is specifically used to deal with
non-i.i.d. noises in the NL-means filtered images. Inspired by
BM3D and LPG-PCA, which perform denoising iteratively,
our idea is also to iteratively apply NL-means. However, NL-
means can’t be applied directly due to the correlated noises
in the image filtered by NL-means. We modify the original
NL-means to incorporate noise dependence into the weight
function, and show how the new weight can be calculated
and give a reasonable estimator. We evaluate GNL-means on
several benchmark images, and compare it to NL-means and
other state-of-the-art non-local methods including BM3D and
LPG-PCA. Our experimental results demonstrate that, while
it is not surprising that BM3D essentially achieves the best
denoising effect, GNL-means always performs better than
NL-means, and better than LPG-PCA on average.

Index Terms— denoising, non-local means

1. INTRODUCTION

Image denoising is still a vibrant research topic. Its objective
is to recover the original clean image from an observed noisy
image. Typically a noisy image is modelled as Z = U + V ,
where Z is the observed noisy image, U is the original clean
image and V is noise. The most commonly assumed noise V
in the literature is Additive White Gaussian Noise (AWGN)
V ∼ N (0, σ2I).

The denoising process is to get an estimate of U from Z,
denoted by Ẑ. Various methods have been proposed to re-
move AWGN and many of them could be classified as either
local or non-local. Local methods exploit the local redun-
dancy and estimate the denoised pixel based on the local in-
formation. Some of the popular local methods are bilateral fil-
ter [1] and directional filtering like steering kernel regression

This work is supported in part by NSF grant CCF-1065305

based [2]. Non-local methods achieve denoising by search-
ing similar pixels that are not necessarily within the neighbor-
hood. NL-means [3], LPG-PCA [4] and BM3D [5] are recent
non-local methods that produce very impressive results.

NL-means is one of the first non-local methods. It first
calculates weights for all pixels/patches in a selected window,
where the weights exponentially decay in dissimilarities, and
then denoises the current pixel/patch as a weighted average.
More about NL-means will be explained in Section 2.

BM3D and LPG-PCA, inspired by the philosophy of NL-
means, are regarded as among the most successful denoising
methods [6]. BM3D is considered to be the best approach. It
combines the non-local principle with classic algorithms, and
consists of two iterations using hard-thresholding and Wiener
filtering respectively. In each iteration, similar blocks are
grouped and transformed into a new domain, and then the
corresponding filter is used to separate the true clean signal
from noise followed by an inverse 3D transform. LPG-PCA
is competitive to BM3D. It combines the non-local principle
with principal component analysis (PCA). It groups and con-
verts patches with similar spatial structures into the PCA do-
main, and applies an LMMSE technique to separate the true
clean signal from noise in the new domain. LPG-PCA is then
iterated one more time.

Both BM3D and LPG-PCA are iterative. BM3D uses two
iterations with different filters and the LPG-PCA procedure
is iterated twice. The idea of this paper is similar: we also
propose a two-stage generalized NL-means that iterates NL-
means. The remainder of this paper is as follows: in Sec-
tion 2, we explain how NL-means works. In Section 3, we
show how NL-means can be extended to deal with non-i.i.d.
noises and apply it on top of NL-means. In Section 4, we
conduct experiments to demonstrate the performance of our
method and compare it to NL-means, LPG-PCA and BM3D.

2. NL-means FILTER FOR IMAGE DENOISING

The basic principle of NL-means is simple and intuitive. It
searches for similar pixels and estimates the true clean value
as a weighted average, where the weights decay exponen-
tially as the similarities decrease. More precisely, let Ui and

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012 - ISSN 2076-1465 260

Vi be the original pixel value and the added noise, for i =
1, 2, . . . ,M , where M is the number of pixels in the image,
and hence the observed noisy pixel is Zi = Ui + Vi. NL-
means estimates Ui as

Ẑi =
1

C

∑
j∈Ni

WijZj ,

where Ni is the search window centered at i, which could be
as large as the whole image and usually chosen empirically,
{Wij | j ∈ Ni} are the weights, and C =

∑
j∈Ni

Wij is a
normalization term.

The weight Wij is defined as an increasing function of
the similarity, or equivalently a decreasing function in some
distance between Ui and Uj , which are usually unknown and
Zi and Zj are used instead.

There are various distances that could be used. NL-means
adopts the squared Euclidean distance and it has been demon-
strated to be very effective. More precisely, the distance be-
tween two noisy pixels Zi and Zj is

Dpixel(Zi, Zj)
def
= (Zi − Zj)

2 − 2σ2.

Note that E [Dpixel(Zi, Zj)] = (Ui − Uj)
2 ≥ 0, however

Dpixel(Zi, Zj) may be ≤ 0.

To make the distance more robust to noise, NL-means ex-
tends the pixel comparison to patch comparison. Based on
the observation that in natural images, similar patches tend
to have similar centers, NL-means uses the following patch-
based squared Euclidean distance:

Dpatch(Zi, Zj)
def
=

d∑
k=1

(Zi(k)−Zj(k))2 − 2dσ2,

where Zi(k) and Zj(k) are the pixels in the patches cen-
tered at the i-th and j-th pixels, respectively, and d is the
number of pixels in a patch. Note that E [Dpatch(Zi, Zj)] =∑d

k=1(U i(k)−U j(k))2.

NL-means uses an exponential kernel as the weight func-
tion:

Wij
def
= exp

(
−max {Dpatch(Zi, Zj), 0}

dσ2T 2

)
, (1)

where dσ2 is for normalization, T is a decay parameter, and
max is used so that the weight is set to 1 when the distance is
negative.

The above described process denoises an image pixel by
pixel. NL-means further extends it to patchwise implemen-
tation. Similar to the pixelwise process, a weight function is
defined between two patches, but each patch is denoised as a
weighted average of all patches centered in the search window
of the first patch.

3. GENERALIZED NL-means

Compared to other non-local methods such as BM3D and
LPG-PCA, NL-means has a poorer performance in both ob-
jective and subjective measures. As NL-means is a weighted
average, it’s also faced with a bias-variance dilemma. Several
parameters would contribute to this, for example, if we choose
a large search window, more similar pixels will help to reduce
the variance, but more non-similar pixels, though with small
weights, would introduce large bias as a whole. Similarly if
we choose a large patch size, the similarity measure becomes
more robust to noise, but variance is not reduced much since
fewer pixels are given larger weights, etc.

Many papers have proposed to improve NL-means by de-
creasing the bias and/or the variance. For example, [7] pro-
posed to decrease the bias using an adaptive search window,
[8] set the parameters locally to find a bias-variance tradeoff,
etc. Motivated by the iterative approaches in BM3D and LPG-
PCA, we also propose a two-stage denoising process that it-
erates NLmeans. Given an image with i.i.d. Gaussian noises,
the first stage is to use NL-means itself to obtain a filtered im-
age. For the second stage, a direct application of NL-means
is not feasible since the noises in the filtered image no long
have the same variance and furthermore they are correlated.
We modify NL-means to deal with non-i.i.d. noises, and ap-
ply it to the filtered image from the first stage.

3.1. Generalized weights

Recall that in NL-means the weight is calculated using the
patch-based squared Euclidean distance Dpatch. Notice that
each pair of pixels Zi(k) and Zj(k) are independent Gaus-
sian. Let

∆ij(k)
def
= Zi(k)−Zj(k).

Then ∆ij(k) is also Gaussian and Var(∆ij(k)) = 2σ2. It
follows that Dpatch(Zi, Zj) can be rewritten as

2σ2
d∑

k=1

[
∆ij(k)2

2σ2
− 1

]
= 2σ2

d∑
k=1

[
∆ij(k)2

Var(∆ij(k))
− 1

]
,

and hence Wij can be reformulated as a generalized weight:

WG
ij

def
= exp

−max
{∑d

k=1

[
∆ij(k)2

Var(∆ij(k)) − 1
]
, 0
}

dT 2/2

 .

Note that the new formulation is still a well-defined
weight function since it decreases in each ∆ij(k) = Zi(k)−
Zj(k). Particularly, if the patches centered at i and j are
identical, then ∆ij(k) = 0 and WG

ij = 1.
NL-means can be generalized by replacingWij withWG

ij .
We call this Generalized NL-means (GNL-means). Note that,
comparing to NL-means, GNL-means does not require Zi(k)
and Zj(k) to be independent, as long as we know how to
calculate Var(∆ij(k)).

261

3.2. Calculation of variances

Our idea is to further denoise the image by applying GNL-
means to the image filtered by NL-means. Recall that Ẑi is
the estimate of the true pixel value U i by NL-means. Let

∆̂ij(k)
def
= Ẑi(k)− Ẑj(k).

To apply GNL-means, we need to calculate Var(∆̂ij(k)).
In NL-means, since Zi(k) and Zj(k) are independent,
Var(∆ij(k)) is trivially 2σ2. However since NL-means esti-
mates each pixel with a weighted average over pixels in its
search window, Ẑi(k) and Ẑj(k) could become correlated.

In general, we explain how to calculate Var(Ẑp− Ẑq) for
any given p, q. Recall that, for any i = 1, 2, . . . ,M ,

Ẑi =
∑
`∈Ni

W ′i`Z` =
∑
`∈Ni

W ′i`(U` + V`),

where W ′i` is normalized weight. For simplicity, let ∆Upq
def
=∑

`∈Np
W ′p`U` −

∑
`∈Nq

W ′q`U`. We have

(Ẑp − Ẑq)−∆Upq

=
∑
`∈Np

W ′p`V` −
∑
`∈Nq

W ′q`V`

=
∑

`∈Np\Nq

W ′p`V` −
∑

`∈Nq\Np

W ′q`V` +
∑

`∈Np∩Nq

(W ′p` −W ′q`)V`.

Then the variance Var(Ẑp − Ẑq) is∑
`∈Np\Nq

W ′2p`σ
2+

∑
`∈Nq\Np

W ′2q`σ
2+

∑
`∈Np∩Nq

(W ′p`−W ′q`)2σ2.

It follows that

Var(Ẑp−Ẑq) = σ2Sp + σ2Sq − 2
∑

`∈Np∩Nq

W ′p`W
′
q`σ

2,

where
Sp =

∑
`∈Np

W ′2p`, and Sq =
∑
`∈Nq

W ′2q` .

Given any i, j, the above equation can be used to compute
Var(∆̂ij(k)) for all 1 ≤ k ≤ d. The computation could
be accelerated by pre-computing Sp for all p = 1, 2, . . . ,M .
However, it seems that the summation over the intersection
Np ∩ Nq has to be calculated individually for each pair of
windows Np and Nq . To increase the efficiency, we use the
following estimator V̂ar(Ẑp − Ẑq) = σ2Sp + σ2Sq . In our
experiments this estimator works slightly worse than the exact
variance, but much faster.

3.3. GNL-means algorithm

Our GNL-means consists of two stages. The first stage is
simply to use the original NL-means to filter the noisy image.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

i

Pi1

j

Pj3
WPi1,Pj1

WPi9,Pj9

patch i

patch j

Fig. 1. Patchwise weights

The weights W = (Wij)M×M by NL-means, where Wij is
defined in Equation (1), are retained for later use.

If patchwise NL-means is used, the weights are calculated
for patches instead of pixels, and all pixels within the same
patch are denoised simultaneously. The number of estimates
for each pixel is the number of patches that cover it; the final
denoised value is the average of all these estimates.

It is easy to see that in patchwise NL-means the final de-
noised value of a pixel is still a weighted average. The actual
weights are the average for the patches that cover the pixel.
Note that the centers of such patches are exactly the pixels
within the patch centered at this pixel. More precisely, let
P i = (Pi1, Pi2, . . . , Pik) be the patch centered at i. Then the
patchwise weight is

W patch
ij

def
=

1

d

d∑
k=1

WPik,Pjk
.

For illustration, an example is shown in Figure 1 for d = 9.
The corresponding patchwise weight is

W patch
ij =

(
WPi1,Pj1

+WPi2,Pj2
+ · · ·+WPi9,Pj9

)
/9.

In the second stage, as described in Algorithm 1, we first
compute the variance Var(Ẑp − Ẑq) for all pairs of pixels p
and q. Note that we don’t need to compute Var(Ẑp − Ẑq) if
q is not in the search window Np (or p is not in the search
window Nq by symmetry). Then we compute the generalized
weights and denoise the pixels by taking the new weighted
average.

Analogous to the patchwise NL-means, the second stage
can also denoise patches instead of pixels. The multiple esti-
mates for each pixel can be finally averaged to build the final
output. Similarly, the final weight of pixel i is

WG,patch
ij

def
=

1

d

d∑
k=1

WG
Pik,Pjk

.

4. SIMULATION RESULTS AND DISCUSSION

In this section we present the simulation results on several
benchmark images and compare the denoising performance
to other methods.

262

Algorithm 1 GNL-means algorithm
Input: Z: image with AWGN

Output: Z̃: denoised image

1. Ẑ ← filtered Z using NL-means
2. if NL-means is pixelwise then
3. Weight matrix: W ← (Wij)M×M
4. else {NL-means is patchwise}
5. Weight matrix: W ← (W patch

ij)M×M
6. end if
7. New variance vector: S ← (σ2Sp)M×1

8. Variance matrix: V ←
(

V̂ar(Ẑp − Ẑq)
)
M×M

9. if pixelwise then
10. New weight matrix: W new ← (WG

ij)M×M
11. else {patchwise}
12. New weight matrix: W new ← (WG,patch

ij)M×M
13. end if
14. Weighted average: Z̃i ←

∑
j∈Ni

W new
ij Ẑj

15. Output Z̃ = (Z̃i)M×1

Noise 0 < σ ≤ 15 15 < σ ≤ 30

N
L

-m
ea

ns Patch 3× 3 5× 5

Window 21× 21 21× 21

Decay 0.4 0.4

G
N

L
-m

ea
ns

Patch
Stage 1 5× 5 7× 7

Stage 2 3× 3 3× 3

Window
Stage 1 21× 21 21× 21

Stage 2 21× 21 21× 21

Decay
Stage 1 0.5 0.4
Stage 2 1.3 1.0

Table 1. Parameters for NL-means and GNL-means

4.1. Parameter selection

Buades et al. [9] provide some heuristic and empirical ways
for NL-means: the patch size d and search window size N
increase as the noise standard deviation σ increases, the de-
caying parameter T decreases as the patch size increases. We
basically follow the same strategy. However, since the sec-
ond step performs better with smaller bias from the first step,
we choose the parameters differently than the one-step NL-
means, for example the patch size is larger. Table 1 gives the
detailed parameters for both steps. Note that the parameters
for NL-means are also shown in Table 1. They are from the
authors’ webpage [9], and claimed to work well for various
images.

4.2. Results

We implement patchwise GNL-means in Matlab and com-
pare it with patchwise NL-means, LPG-PCA and BM3D. The
source codes for BM3D and LPG-PCA are obtained from the

authors’ websites. BM3D has two profiles and for fair com-
parison we use the normal profile which produces better re-
sults. We also note that LPG-PCA excludes the boundary pix-
els of width 20 prior to objective testing such as PSNR and
SSIM, thus the same applies to other methods.

GNL-means is tested on six benchmark images Lena,
House, Cameraman, Monarch, Peppers, and Barbara. Table
2 gives the PSNR and SSIM from GNL-means as well as
those from NL-means, LPG-PCA and BM3D.

original noisy, σ = 20

NL-means, PSNR = 29.83dB LPG-PCA, PSNR = 30.01dB

BM3D, PSNR = 30.74dB GNL-means, PSNR = 30.58dB

Fig. 2. Comparison of Visual Quality

In Table 2 the best results are shown in bold face, while
the second best are shown in blue. As observed, it is not sur-
prising that BM3D achieves the best results. GNL-means is a
big improvement over NL-means, and has better results than
LPG-PCA on average. Our method follows BM3D and per-
forms competitively well.

For visual quality comparison, we only show the denoised
results for one image due to limited space. See magnified
Figure 2. GNL-means removes the noise significantly but re-
constructs some fine details, even though the overall PSNR
is slightly lower than BM3D. For other images and also re-
sults for more noise variances, please go to the webpage:

263

NL-means LPG-PCA BM3D GNL-means

Lena
σ = 10 32.84 (0.9053) 33.69 (0.9260) 33.92 (0.9277) 33.32 (0.9179)
σ = 20 29.39 (0.8355) 29.95 (0.8582) 30.26 (0.8693) 29.81 (0.8550)
σ = 30 27.18 (0.7632) 27.77 (0.7988) 28.32 (0.8226) 27.83 (0.8035)

House
σ = 10 34.67 (0.8835) 35.79 (0.9112) 36.21 (0.9146) 35.50 (0.8960)
σ = 20 31.88 (0.8253) 32.55 (0.8485) 33.29 (0.8581) 32.80 (0.8492)
σ = 30 29.79 (0.7627) 30.68 (0.8056) 31.81 (0.8335) 31.00 (0.8188)

Cameraman
σ = 10 33.65 (0.9161) 33.93 (0.9363) 34.41 (0.9402) 34.11 (0.9337)
σ = 20 29.83 (0.8576) 30.01 (0.8790) 30.74 (0.8996) 30.58 (0.8903)
σ = 30 27.82 (0.7908) 27.94 (0.8269) 28.70 (0.8635) 28.57 (0.8542)

Monarch
σ = 10 33.17 (0.9336) 33.79 (0.9546) 33.88 (0.9572) 33.93 (0.9540)
σ = 20 29.25 (0.8839) 29.84 (0.9100) 30.15 (0.9220) 30.06 (0.9132)
σ = 30 26.98 (0.8225) 27.61 (0.8629) 28.15 (0.8877) 27.76 (0.8689)

Peppers
σ = 10 33.61 (0.8987) 34.24 (0.9186) 34.74 (0.9241) 34.39 (0.9188)
σ = 20 30.46 (0.8428) 30.89 (0.8656) 31.54 (0.8851) 31.14 (0.8713)
σ = 30 28.13 (0.7763) 28.60 (0.8146) 29.51 (0.8479) 28.85 (0.8281)

Barbara
σ = 10 32.78 (0.9243) 34.79 (0.9529) 34.59 (0.9535) 33.85 (0.9442)
σ = 20 29.55 (0.8645) 30.79 (0.8967) 31.02 (0.9075) 30.24 (0.8882)
σ = 30 27.23 (0.7858) 28.46 (0.8391) 28.92 (0.8591) 28.00 (0.8270)

Table 2. PSNR and SSIM (value in the parenthesis) results

http://videoprocessing.ucsd.edu/˜eluo/
projects/denoising.

5. CONCLUSION

This paper proposed Generalized NL-means filter (GNL-
means) that can be used for both i.i.d. and non-i.i.d. noises,
which implies the nomenclature “generalized”. We applied
it to denoise the NL-means filtered image, whose noises are
non-i.i.d., and we also showed how to estimate the non-i.i.d.
noise variances. This process is a two-stage or iterative im-
age denoising using NL-means and the experimental results
demonstrate that the proposed method yields competitive
performance as the state-of-the-art denoising methods. In
the future we would test GNL-means directly on noisy im-
ages with non-i.i.d. noises, for example Multiplicative White
Gaussian Noise (MWGN).

6. REFERENCES

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray
and color images,” in Proceedings of the Sixth Interna-
tional Conference on Computer Vision, ser. ICCV ’98.
Washington, DC, USA: IEEE Computer Society, 1998.

[2] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression
for image processing and reconstruction,” Image Process-
ing, IEEE Transactions on, vol. 16, no. 2, pp. 349 –366,
feb. 2007.

[3] A. Buades, B. Coll, and J. M. Morel, “A review of image

denoising algorithms, with a new one,” Simul, vol. 4, pp.
490–530, 2005.

[4] L. Zhang, W. Dong, D. Zhang, and G. Shi, “Two-stage
image denoising by principal component analysis with
local pixel grouping,” Pattern Recogn., vol. 43, pp. 1531–
1549, April 2010.

[5] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, and
S. Member, “Image denoising by sparse 3d transform-
domain collaborative filtering,” IEEE TRANS. IMAGE
PROCESS, vol. 16, p. 2007, 2007.

[6] A. Buades, B. Coll, and J.-M. Morel, “Self-similarity-
based image denoising,” Commun. ACM, vol. 54, pp.
109–117, May 2011.

[7] C. Kervrann and J. Boulanger, “Unsupervised patch-
based image regularization and representation,” in Proc.
Eur. Conf. Comp. Vis. (ECCV06), 2006, pp. 555–567.

[8] V. Duval, J.-F. Aujol, and Y. Gousseau, “A bias-variance
approach for the nonlocal means.” SIAM J. Imaging Sci-
ences, vol. 4, no. 2, pp. 760–788, 2011.

[9] A. Buades, B. Coll, and J. M. Morel,
“Non-local means denoising.” [Online]. Available:
http://www.ipol.im/pub/algo/bcm non
local means denoising/

264

