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ABSTRACT

Modern radio systems require accurate radio channel esti-
mates in the presence of fast fading. This paper proposes
an iterative radio channel estimation system where the de-
tected and decoded symbols from the previous iteration are
used as ‘virtual’ pilot symbols to improve estimation accu-
racy. In each iteration of the receiver algorithm, a low order
Kalman filter provides a rough estimate of the channel gains.
This rough estimate is refined to a more accurate radio chan-
nel estimate with a zero phase de-noising filter. This two stage
channel estimation system is capable of providing near opti-
mal channel estimation at a much lower computational cost
than prior art. It is demonstrated that the proposed radio chan-
nel estimation is capable of supporting low error data recep-
tion at high fading rates. The algorithm can be implemented
efficiently on modern multicore computing systems.

Index Terms— iterative signal processing, channel esti-
mation, radio communications

1. INTRODUCTION

For efficient data detection, radio receivers require accurate
estimates of the channel gains. Classic channel estimation
systems transmit known pilot signals and measure the result-
ing signal at the receiver, employing interpolation to estimate
the channel gains between the pilot symbols [1]. In fast fad-
ing channels, the density of the pilot symbols required for
sufficiently accurate channel estimation to support low error
performance does not permit high data rates. To address this
problem, iterative receiver algorithms have been proposed [2].
These methods use sparse pilots signals to initially estimate
the radio channel for preliminary data detection and decoding.
To improve data detection, these methods then re-estimate
the radio channel using the previously detected data values
as ‘virtual’ pilots which are much denser in time than the
dedicated pilot symbols. This procedure is iterated until the
detected data values converge. With iterative channel estima-
tion/data detection, the required density of dedicated pilots
symbols to achieve acceptable error performance is greatly
reduced. The computational costs of prior art iterative meth-
ods of channel estimation under fast fading are too large for
commercial field deployment [2].
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Kalman filters for channel estimation have a computation
cost per sample proportional to the length of the state vec-
tors, S, squared [2,3]. The state vector length is given by
S = L - M where L is the number of propagation paths
and M is a constant proportional to the memory of the radio
channel estimation system. Channel fading processes require
large memory M for accurate estimation [4], which makes the
computational cost of pure Kalman filter-based channel esti-
mation large. This paper proposes the use of a low-memory
Kalman filter combined with a smoother for radio channel
estimation. The Kalman filter has a low memory M so it
provides a rough estimate of the channel gains for each prop-
agation path at a low cost. To reduce the channel estimation
error, a zero phase filter is applied to the estimated channel
gains for each propagation path. Zero phase filters use digi-
tal infinite impulse response (IIR) filters with special process-
ing to remove the phase distortions [5]. The channel gain
estimates for IV signal samples are buffered. The buffered
channel gain estimates are passed through an IIR filter first
in the forward direction. This filtered signal is then reversed
and passed through the IIR filter again. The initial state of
the reverse IR filter is determined from the final state of the
forward IIR filter to avoid negative effects from signal trunca-
tion. The reverse IIR filter output is reversed again to obtain
the smoothed channel estimate. This procedure allows the
system to enjoy the high selectivity and low computational
cost of an IIR filter without phase distortion. The applica-
tion of the zero-phase filter allows low cost channel estima-
tion with near optimal estimation error.

Section 2 discusses the models of the radio channel. Sec-
tion 3 will describe the structure of the proposed radio re-
ceiver and the channel smoother. Section 4 contains simula-
tion results demonstrating the effectiveness of the proposed
receiver. The conclusions of the paper and future research
directions will be described in Section 5.

Notation: Matrices and vectors are denoted with bold up-
percase and lowercase letters such as M and . Entry k of
vector x is denoted x;. Entry n of row k of matrix M is
denoted M, ,,. The Kronecker matrix product is denoted as
®. The size IV identity matrix is denoted as I . The all zero
matrix of with n rows and k& columns is denoted as 0,, -
The matrix transpose and Hermitian transpose operations are
denoted with superscript 7' and H symbols respectively.
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2. CHANNEL MODEL

The received radio signal at baseband is given as

L—1
y() =Y g m)sn—1)+v(n) )
=0

where L is the number of propagation paths, g; (n) is the gain
of path [ at sample time n, s (n) is the transmitted symbol
at time n and v (n) is additive white Gaussian measurement
noise with a variance of o,2. The channel gains for each path
is assumed to be subject to Rayleigh fading following Jake’s
model with the autocorrelation for propagation path ! given
by R, (d) = E[g; (n) g (n+d)] = PuJo (27 f4T.d) where
P, is the mean power gain for propagation path I, J () is
the zeroth order Bessel function of the first kind, f; is the
Doppler frequency, and T is the sampling period [6]. The
channel gains for different propagation paths are assumed to
be independent. From R; g (d), the power spectral density of
the radio channel gains for path [ is defined as

= |1 < fa
rfaJ1— (f/fa)? G))
0

otherwise

Py, (f) =

The optimal mean square error for channel gain estimation is
€2 = f}d No Plgg (f/ {NO + Plgg (f)} df, calculated from
Weiner filter theory, where Ny is the noise density [7].

In prior art, radio channel gains have been accurately
estimated via the use of basis expansion models (BEMs)
of the channel process [2, 8]. For a block of T}, samples
such that n = 1---7T, the channel gain for a single tap is
given as weighted sum of B basis functions; a vector of
T, samples of channel gains for propagation path [ is given
by g = Ex' where E is a T, x M matrix containing
the BEM basis vectors in each of its columns, and x' is
a length M vector holding the BEM coefficients for prop-
agation path [. The discrete prolate spheroidal sequence
(DPSS) BEM has been employed for channel modelling
with the columns of E specified as the B eigenvectors as-
sociated with the highest magnitude eigenvalues of the ma-
trix C' defined as C,. . = sin (27 (r — ¢) f¢Ts) / [7 (r — ¢)]
with B > 2[fqT,Ts] + 1 [3,9]. Channel estimation sys-
tems need to know the covariance of the channel coeffi-
cients, Rxx, for each propagation path. The DPSS pro-
vides basis functions which are maximally concentrated in
the Doppler frequency band. They can be calculated as
Rxx =E [scl (:cl)H} = EHR,,E where R, is the co-
variance matrix of the channel gains within a BEM block, so
that [R,],. . = Rgg (7 — ¢) assuming P, = 1.

The acéuracy of radio channel BEM estimation improves
as T, and/or B increases. Unfortunately, the cost of estimat-
ing the radio channel coefficients per input sample is pro-
portional to the number of BEM coefficients B which is it-
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Fig. 2. Overlapping channel estimation blocks

self proportional to T;,. To obtain accurate channel gain esti-
mates at lower values of B which permits low computational
cost, we propose to combine channel state estimates between
frames. This is discussed in the next section.

3. RADIO RECEIVER

The structure of the radio channel estimation system we pro-
pose is shown in Figure 1. During each iteration, the radio
channel is estimated using a Kalman filter based system using
the value of the pilot signals and detected data symbol values
from the previous iteration. A low order Kalman filter is em-
ployed to minimize computational cost. As a result of this, the
Kalman filter provides only a noisy estimate of the radio chan-
nel gains, g; (n) forn =1---Nand! =0---L — 1. A zero
phase filter, described below in more detail, is then employed
to calculate improved channel gain estimates g; (n). These
channel gain estimates are used for data detection and decod-
ing. The estimates of the transmitted data symbols are also
fed back to the channel estimation as ‘virtual® pilots for the
next iteration. The data symbol feedback consists of vectors
of the mean estimated data symbols, 5 (n) and the variance of
the estimated data symbols, v (n) which provides information
about the confidence of the data detection/decoding system in
each data symbol value. In the first iteration, only the values
of pilot symbols are known and § (n) = 0 and v (n) = 1 for
all other symbols.

It is known that BEMs provide less accurate descriptions
of signals near the start and end of each modeled period. To
avoid this problem, the previous work proposed a channel es-
timation system with BEM periods of length T}, overlapping
by T,,/4 samples at each end so that samples near the start
or end of any given BEM period are not used for data de-
tection [3]; only the samples from 7},/4 to 37,/4 within a
given BEM block are used for channel estimation except at
the end or beginning of the measurement interval. For ex-
ample, the first BEM block, k£ = 1, estimates the channel
BEM coefficients for samples 1---7}, but the only the es-

1609



Algorithm 1 Channel Estimation

Algorithm 2 Channel Kalman Filter

Inputs:

e Number of channel samples: NV

e Number of propagation paths: L

e Signal measurements: y (n) forn=1---N

e Forn=—-L+1---N:

— Estimated data symbols: s (n)
— Variance of estimated data symbols: v (n)

Outputs:

e Channel gains vectors: g; (n) forn=1---N
I: ng + 1
2: while ny, +7, < N do
3 if ng+ 7, > N then
4: ng < N —T,+1
5: end if
6 b T,/4
7 if n, = 1 then
8 b1
9: end if
10: e 31,/4
11: if ng+7,—-1=N then
12: e+ T,
13: end if
14: & < Channel Kalman Filter (ns,y (n),s(n),vy(n))
15: fori=1.--Ldo

16: v+ Ex
17: g(ns+b—1--ns+e—1)« vp.,
18: end for

19: ns < ng+1,/2

20: end while

21: for [=0---L —1do

22: Apply zero phase filter to g; (n) to obtain g; (n)
23: end for

timated channel gains for 1---37),/4 are used for data de-
tection. The second BEM block, k = 2, estimates channel
gain coefficients for samples T},/2 - - - 3T},/2 — 1 with the es-
timated channel gains for 37, /4 - - - 5T}, /4 used for data de-
tection. The third BEM block, k = 3, estimates channel gains
for samples for T}, - - - 27},, — 1 with only the estimated val-
ues for 5T, /4 - - - 7T}, /4 used for data detection. The setup of
BEM blocks is shown in Figure 2 where the darker sections
show the estimated channel gains for each BEM block used
for data detection. The full description of the algorithm to es-
timate the channel gains using a Kalman filter to is described
in Algorithm 1 and Algorithm 2.

The proposed channel estimation algorithm uses a Kalman
filter algorithm [10] as shown in Algorithm 2 to estimate
the channel gain BEM coefficient state vector « (n) which
is the concatenation of the L BEM coefficient vectors,
x! (n) for the propagation paths [ = 0---L — 1. The
Kalman filter algorithm assumes that the channel BEM coef-
ficients remain nearly constant over each BEM period; i.e.,

Inputs:
e Starting index: n
e Signal measurements: y (n) forn =n,---ns+71,—1
e Forn=n,—L+1---n,+T):
— Estimated data symbols: § (n)
— Estimated data variance: v (n)
Outputs:
e Estimated channel gain BEM coefficients: x

I: :i}(O|0) <_O(ML)><1
2: P(0|0) « I, ® Rxx
3: forn=1---T, do

4: z(nn—1)«a(n—1n-1)

550 Pn—1)« P(n—-1n—-1)+0clIyr

6: e+ rownof K

7. 8+ [(n+ns—1) - 5(n+ns— L)

8: H+5®e

9: Cc 4+ HI:’I‘IH-F(L,2

10: for(=0---L—1do

11 x! « [z (n|n — Dlyar1ogayar

12: P! — [P (n|n - 1)]l-M+1---(l+1)M,l-M+1~--(l+1)M
13: vl<—fy(ns—|—n—1—l)e{azl (zcl)H—l-Pl] el
14: cc+

15: end for

16: K« P(nn—-1)H"/c

17: z+<yn+ns—1)—Hz(nn-1)

18: Z(nn)«—x(nn—-1)+ K=z

19: P(n|n) — [I(Ib[-L) — KH] P(n|n — 1)
20: end for

21 &+ & (Tp|T))

z(n+1) =z (n)+ w (n) where w (n) is a white Gaussian
vector process with the covariance of each random vector
Cov [w (n)] = o2y with 02 being a small non-zero
value. Ideally, 02 should be zero but using a small value
such as 10~* improves the numerical stability of the filtering
algorithm. An equation relating the BEM coefficients to the
observed signal is obtained by substituting the calculation of
the channel gain from BEM coefficients into Eqn (1). The
resulting measurement equation relating the state vector to
the received signal is then y (n) = H (n) - x (n) + v(n)
where H (n) = [S(n) ® e (n)] when e (n) is the row of the
basis matrix E for the sample n of the current BEM block,
ands(n)=1[s(n) --- s(n—L+1)].

The variance of the estimated data symbols adds ambi-
guity to the measurement equation. The channel estimation
algorithm adjusts for this by increasing the assumed variance
of the measurement noise vector v (n) for measurements
where the influencing samples are not known perfectly. Since
the channel gain process is independent of the transmitted
data sequence and assuming the channel gain process for
each propagation path is independent, the variance of y (n) is
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calculated as

Var[y (n)] = H (n) - Cov [z (n)] - [H (n)]" + 0.7
L—1
+Y emRL ey (n—-1) @
=0

where R., = &' (n) [2' (n)] 4 Cov [! (n)]. The first line
of (3) is just the measurement covariance calculation of the
standard Kalman filter [10]. The second line computes the
extra variance caused by ambiguity in the knowledge of the
transmitted symbols. This calculation is performed in lines
10-15 of the Algorithm 2. The effect of this addition to the
calculation is to speed up the convergence of the algorithm
since it causes the channel estimation to emphasis measure-
ments dominated by symbols which are known well and de-
emphasizes measurements dominated by symbols which are
unknown. This adjustment is the main reason for the faster
convergence of this channel estimation algorithm compared
to the algorithm presented in [3].

The key difficulty with estimation of the radio channel
with linear filters is that the radio channel gain processes are
bandlimited, as shown in Eqn. (2), which requires the filters
for optimal channel estimation to have extremely long im-
pulse responses [4]. The long impulse response requirement
translates into large memory requirements. For BEM chan-
nel estimation techniques, this memory requirement maps to
using long BEM periods with [3] suggesting BEM periods of
T, = 500 data samples for acceptable BER results. Since the
computational cost of the Kalman filter calculation per sam-
ple is on the order of O (J?) where J = B - L is the length
of the state vector and B is proportional to 7, long BEM
periods map to large computational costs.

This proposed method reduces the need for long BEM pe-
riods by employing the zero phase filter noise removal method
stage. A Kalman filter calculates noisy estimates of the chan-
nel gains and the gain estimates for N samples are buffered.
The channel gain estimate vectors for each propagation path
are passed through an IIR filter first in the forward direction.
This filtered signal is then reversed and passed through the
IIR filter again with the final output time reversed again to
obtain the final channel estimate. The initial state of the re-
verse IIR filter is calculated from the final state of the forward
IIR filter to reduce truncation effects [11]. This procedure
removes phase distortion, providing high selectivity at low
computational cost [5]. For fast fading channels with nor-
malized fading rates up to fy7Ts, = 0.01, a zero phase filter
with a component Elliptical approximation IIR filter of order
O = 6 with a maximum passband ripple of A, = 0.001 dB, a
minimum stopband attenuation of A, = 14 dB, a normalized
passband edge of W), = 0.02 and a normalized stopband edge
of W, = 0.025 allows good channel estimation performance
with BEM periods as low as T}, = 100. The zero phase filter
is applied to the estimated channel gain vector for each prop-
agation path separately. The cost per sample of the zero phase

filter is proportional to O (O - L). To achieve comparable re-
sults without the zero phase filter, a BEM period of T}, = 500
was needed [3], showing the zero phase implementation gives
a cost reduction of a factor of ~ 25.

Another advantage of the proposed algorithm is that it ex-
hibits a large degree of parallelism, and thus it is compatible
with multicore implementations. Specifically, the Kalman fil-
ter calls on Line 14 of Algorithm 1 does not have any data in-
terdependencies, so independent filter instances (one instance
for each block of symbols shown in Figure 2) can be run in
parallel subject to the available hardware capacity. In addi-
tion, since the covariance matrix c has the size 1 x 1 (thus, it
is a scalar), the Kalman filter gain K can be calculated by a
simple division rather by matrix inversion. The large majority
of the remaining operations in the Kalman filter algorithm are
matrix multiplications, that are very well supported in current
Field-Programmable Gate Arrays (FPGA) architectures. The
intrinsic parallelism and the match with existing FPGA archi-
tectures makes the proposed algorithm commercially viable.

For the simulations results described in Section 4, the data
detection is performed using a Kalman filter equalizer fol-
lowed by a soft input/soft output data detector/decoder. The
full details of this data detection/decoder system are described
in [3]. However, the channel estimation results are not spe-
cific to this specific data detection system, any data detection
system may be used which can provide soft output feedback
of the data symbol values to the channel estimation system.

4. RESULTS

This section presents results from the application of the pre-
ceding algorithm for a multipath propagation radio channel
with L = 3 equally powerful propagation paths. The normal-
ized fading rate is set to ;75 = 0.01. The data transmission
signal considered is a standard binary data sequence modu-
lated onto a 16-QAM gray-coded constellation after being en-
coded with a rate 1/2 convolutional code with the octal gener-
ator of (133,171). To assist with the initial radio channel esti-
mation, we insert [, = 5 pilots symbols before every [, = 20
data symbols. The overall data rateis 1/2-1,/(ls +1,) - 4 bits
per sample. We assume that power control is employed so that
the mean power of the received signal is unity: Zf;ol P =1
The data is encoded into blocks of D = N -1/ (Is +1,,) sym-
bols with interleaving performed over the block 4 - D coded
bits. For our simulations, D = 10000 symbols so that the
channel estimation block length was N = 12500. The chan-
nel estimation algorithm uses 7, = 100 and B = 5. The
proposed algorithm’s receiver was limited to 5 iterations.
The BER results from the application of the proposed al-
gorithm, compared with the Extended Kalman Filter of [2]
and an receiver operating the ideal knowledge of the CSI are
shown in Figure 3. The algorithm from [3] is not plotted but
it gives nearly identical BER performance to the proposed al-
gorithm, though it requires 15 iterations to converge, as op-
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posed to 5 iterations for the proposed algorithm . As described
above, the computational cost of each iteration for the pro-
posed algorithm is much lower than the other two algorithms.
It can be seen that the proposed algorithm gives BER results
within 0.5 dB of the ideal CSI case for E}, /Ny > 7 dB.

The mean square error of the proposed channel estimation
algorithm for one of the channel taps is shown in Figure 4
where the algorithms performance is compared with the ideal
Weiner filter’s mean square error. It can be seen that the pro-
posed algorithms MSE is nearly as good as the ideal case at
higher E; /Ny ratio values. This suggests that the proposed
algorithm is nearly optimal in terms of channel estimation
performance as well as having low computational cost.

5. CONCLUSIONS

We presented a new channel estimation algorithm which uses
a Kalman filter to estimate the parameters of a fast fading ra-
dio channel using a zero phase filter to de-noise the channel
gain estimates. This allows a lower memory Kalman filter to
be used reducing the overall computational cost. The new al-
gorithm provides nearly optimal BER and channel MSE per-
formance and can be implemented on multicore processing
units. Future work will investigate the relationship between
the parameters of the component IIR filter and the required
BEM period for the Kalman filter channel estimation.
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