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ABSTRACT

Generalized adaptive comb filters can be used to iden-
tify/track parameters of quasi-periodically varying systems.
In a special, signal case they reduce down to adaptive comb
filters, applied to elimination or extraction of nonstation-
ary multi-harmonic signals buried in noise. We propose
a new algorithm which combines, in an adaptive way, re-
sults yielded by several, simultaneously working generalized
adaptive comb filters. Due to its highly parallel estimation
structure, the new algorithm is more accurate and more ro-
bust than the currently available algorithms.

1. INTRODUCTION

We will consider the problem of identification of quasi-
periodically varying complex-valued systems, i.e., systems
governed by

O:(u(t—i+1)=@ (1)0(t) +v(r)
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where t = ...,—1,0,1... denotes the normalized discrete
time, y(¢) denotes the system output, p(z) = [u(z),...,u(t —
n+1)]T denotes regression vector, made up of the past in-
put samples, v(¢) denotes measurement noise, and 6(¢) =
[61(1),...,0,(¢)]T is the vector of time-varying system coef-
ficients, modeled as weighted sums of complex exponentials
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All quantities in (1)—(2), except angular frequencies
(t),...,0k(t), are complex-valued. Since the complex
‘amplitudes” ay(t) = [ax (t),...,aw(t)]T, assumed to vary
slowly with time, incorporate both magnitude and phase in-
formation, there is no explicit phase component in (2). Un-
der certain circumstances (in the presence of several strong
reflectors) the model (1)—(2) can be used to describe rapidly
fading mobile radio channels [1], [2]. In this case y(¢) de-
notes the sampled baseband signal received by the mobile
unit, {u(r)} denotes the sequence of transmitted symbols,
and v(¢) denotes channel noise.

We will assume that the frequencies @y (¢) are harmonically
related, namely
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where @y(¢) denotes the slowly time-varying fundamental
frequency and [; are integer numbers. Such multiple fre-
quencies, called harmonics, appear in the Fourier series ex-
pansions of periodic signals. For example, if parameter tra-
jectory 6(¢) is periodic with period N, it admits the following
Fourier representation

N—1 ) 207
0(r) = Z ekt gy = =2
k=0 N

The notion of ‘time-varying harmonics’ can be regarded a
natural extension of the Fourier analysis to quasi-periodically
varying systems, such as (1)—(2). The choice of the multipli-
ers I,k =1,...,K, depends on our prior knowledge of the
system time variation. When all harmonics are expected to
be present, one should set /; = k. In the presence of odd
harmonics only, the natural choice is [; = 2k — 1, etc.

In the special case where n =1 and ¢(¢) = 1, equations (1)-
(3) describe a complex-valued multi-harmonic signal s(¢) =
0(¢) buried in noise

¥(1) = s(1) +v(1), a(r)e/ T 0 (4)

The problem of either elimination or extraction of multi-
harmonic signals buried in noise can be solved using adap-
tive comb filters. For this reason the system identifica-
tion/tracking algorithm described below can be considered
a generalized comb filter.

2. GENERALIZED COMB FILTER
Suppose that

(A1) The sequence of regression vectors {¢(¢)} is a wide
sense stationary and ergodic process with a known posi-
tive definite correlation matrix E[@* (1) (t)] = ® > 0.

(A2) {v()}, independent of {p(¢)}, is a sequence of zero-
mean circular, independent and identically distributed
random variables.

2.1 Unconstrained algorithm

Under assumptions (A1)—(A2), identification of the system
(1)—(2) can be carried out using the multiple frequency ver-
sion of the generalized adaptive notch filter (GANF) pro-
posed in [3] (the signal-oriented version of this algorithm was
analyzed in [4]). In addition to the instantaneous frequencies



(1), this algorithm tracks the frequency rates defined as
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where * denotes complex conjugation, H denotes Hermitian
transpose (conjugate transpose) and p; > 0,7% > 0,1, > 0,
M < Y < W, k=1,..., K, denote the user-dependent adap-
tation gains controlling the speed of frequency rate adapta-
tion, frequency adaptation and amplitude adaptation, respec-
tively. To reduce the number of design degrees of freedom,
onecanchoose Ny =...=Ng =N, 1 =...=7Y =7 and
up=...=ug=4».

The algorithm (5) is made up of K single-frequency GANF
sub-algorithms [each taking care of one frequency compo-
nent of 6(¢)], that work in parallel and are driven by the
common prediction error £(¢). In [5] it was shown that
the number of frequency modes, as well as all initial con-
ditions needed to smoothly start (start without initialization
transients) the GANF algorithm, can be inferred from non-
parametric DFT-based analysis of a short startup fragment of
the input-output data. The tool that can be used for this pur-
pose was termed generalized (system) periodogram, as in the
signal case it reduces to the classical periodogram.

In spite of its simplicity, the gradient frequency tracking
mechanism adopted in (5) has very good statistical proper-
ties — as shown in [3] for the single frequency case (K = 1),
when the instantaneous frequency drifts according to the in-
tegrated random walk model (quasi-linear variation), the op-
timally tuned GANF algorithm (5) is statistically efficient,
i.e., under Gaussian assumptions it reaches the Cramér-Rao-
type lower frequency and frequency rate tracking bounds.
When applied to identification of the system (1)—(3) the
GANTF algorithm (5) has two serious drawbacks.

First, it does not take into consideration the harmonic struc-
ture (3), i.e., the estimated frequencies are regarded as mutu-
ally unrelated quantities, while the true harmonics vary in a
coordinated way. Hence, even though such an unconstrained
multiple-frequency generalized adaptive notch filter can be
used to identify the multi-harmonic system/signal, its track-
ing characteristics will be generally inferior to those offered
by solutions that incorporate the harmonic constraints (the
analysis carried out for stationary multi-harmonic signals by
Nehorai and Porat [6], shows that significant improvements
in the Cramér-Rao bounds can be achieved if the harmonic
structure is taken into account in the estimation process).
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Second, the algorithm (5) is not robust to incorrect frequency
matching. While the strong frequency components, i.e.,
those characterized by large values of the signal-to-noise ra-
tio SNR(¢) =|| a(t) ||* /o2 are usually tracked successfully,
the weak ones may be difficult to follow — even if the initial
frequency assignment is correct, the sub-algorithms tracking
such weak components may, after some time, lock onto the
neighboring, stronger components, corresponding to higher
or lower frequencies. Moreover, when the system/signal is
nonstationary, the ‘strength’ of different harmonic compo-
nents may also vary with time, which further complicates the
picture. Note that in the parallel estimation structure under-
lying (5), the neglected harmonic components become a part
of the prediction error £(¢). Hence, since all sub-algorithms
are driven by the same error signal, a failure of even one of
them adversely affects performance of the entire structure. In
extreme cases such a failure may even cause the filter diver-
gence.

2.2 Constrained algorithm

Note that, according to (3), the estimates of the k-th harmonic
o (t) and its rate of change & (r) can be used to obtain the
estimates of all other harmonics using the relationships

- L i=1,...K,i#k (6)

This simple observation is the cornerstone of the constrained
tracking algorithm summarized below:
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Similar to (5), the new algorithm is composed of K sub-
algorithms, which track different harmonics. However, un-
like (5), the k-th sub-algorithm estimates on its own all signal
components', and works out its own prediction error &(z).

ITo avoid confusion, the corresponding estimates are double indexed —
Qi (1), Gi(r) and (T),v|k(t) denote the estimates of o;(t), 6;(r) and w;(t),
respectively, yielded by the k-th sub-algorithm.



We will show that such an estimation redundancy makes the
constrained algorithm more robust than the unconstrained
one. Note that only the k-th harmonic is directly estimated by
the k-th sub-algorithm — the remaining frequency estimates
are obtained indirectly via (6).

Since each of the sub-algorithms generates its own esti-
mate of the parameter vector, some sort of information fu-
sion is needed to arrive at the final estimate aggregating, in

a statistically meaningful way, all partial estimates 6y(¢|¢),
k=1,...,K. Our fusion formula will take a form of a con-
vex combination

0(1lr) = Y w ()i (1]r) (8)

M=

k=1

where the weights py(t) > 0,k = 1,....K, ¥X (1) =1
further referred to as credibility coefficients, are evaluated in
terms of the locally observed prediction errors yielded by the
corresponding sub-algorithms. The details of this construc-
tion will be given in the next section.

3. INFORMATION FUSION

In this section we will derive the information fusion for-
mula. We will start from a brief description of the classi-
cal Bayesian estimation principle. Then we will present a
non-standard Bayesian solution based on the so-called pre-
quential approach.

3.1 Classical Bayesian approach

Consider K hypothetical, mutually exclusive statistical mod-
els A, k=1,...,K, of the data-generating mechanism (sys-
tem or signal) which might have produced the observed data
Q(t). Suppose that, based on each model, one works out an
optimal, in the mean-squared sense, one-step-ahead predic-
tion of the signal y()

My — B+ 1) =@ (t+ D)0t +1]r) (9
where 6;(t + 1|t) = E[0(r + 1)|Q(¢), 4] denotes the one-
step-ahead predictor of O(r+1).

Itis well-known [7] that the optimal Bayesian predictor, min-
imizing the quadratic loss function

— 3+ 1])]*}

takes the form (assuming that one of the models is a true
system/signal description)

E{ly(+1)

K
y(r+1]r) :Z )yt +1t) (10)
where the weights () are given by
My )T (M
(1) = Pt = P ARy

Yic1 p(Q)| )7 (M)

i.e., they are equal to posterior probabilities of the respective
models. By () we denote the prior probability of the
model .Z.

Note that the predictor (10) can be rewritten in the form

S+ 1)) = @ (e +1)8(t + 1r)
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where

0(t+10r) =Y m()0k(t +1]r) (12)

™~

denotes the combined estimate of (¢ + 1).

Even though intuitively appealing, the classical Bayesian so-
lution has very limited practical usefulness as it applies to
a narrow class of optimal predictors inferred from the un-
derlying data-generating rules. As a result, it can’t be used
to combine the results yielded by ad hoc predictors, such as
those described in the previous section.

3.2 Prequential approach

The prequential (predictive + sequential) approach, intro-
duced by Dawid [8], is a general framework for assessing
and comparing the predictive performance of forecasting sys-
tems. According to the prequential principle, the assessment
of the quality of a forecasting system, given a sequence of
observed outcomes, should depend only on the forecasts it in
fact delivered for that sequence.

To guarantee adaptivity of the fusion rule, at each time in-
stant ¢ our prequential analysis will be restricted to a local
decision window T(¢t) = [t —M +1,...,t], covering the last
M input/output measurements Qr (¢ ) {y( ), (i),i € T(1)}.
We will assume, in addition to (A2), that the measurement
noise is distributed according to the complex generalized
Gaussian law [9]

v CGN (v, B)

B L (Y
zwm/mep{ (w)} (4

where I'(+) is the Gamma function, ¥ > 0 is the unknown
scale parameter and 3 > 0 is the known shape parameter.
We note that (12) has a very flexible form which adapts to a
large family of symmetric distributions from super-Gaussian
to sub-Gaussian, including specific densities such as Lapla-
cian (8 = 1) and Gaussian (8 = 2).

According to the rules of prequential analysis, in order to
assess a forecasting system, all parameters [such as ()] and
hyperparameters (such as y) that are not known at the instant
t, should be replaced by their current estimates, i.e., estimates
based on Q(z), or should be eliminated, e.g. integrated out
[10]. For the system (1) this is equivalent to adopting (for
assessment purposes only) the following hypothetical model
of system parameter variation

A1) 0() = ieT(r)

‘induced’ by the k-th prediction algorithm.

Based on the same principle the unknown scale parameter
will be treated as a nuisance parameter with assigned nonin-
formative (improper) prior distribution

w(y| A1) =

pv(v;y,B) =

é\k(i|i7 1)7

1
m(y) o —

v
the form of which stems from the Jeffrey’s rule [7].
Finally, we will assume that the hypotheses % (¢) are
equiprobable

(14)

1
K’

n(H(1)) k=1,....K (15)



The ‘optimal’ prequential rule, allowing one to combine
different forecasts, takes the same form as the classical
Bayesian rule (10). The only thing that changes is the way of
computing the credibility coefficients p(¢), which now are
given by

Be(e) = POAIQr (1)) = p(Qr (1) A1)
= [ p@r 00, v)n(wl AR (A0 (16)

The prequential likelihood function can be expressed in the

form
p(Qr ()| () H pv (& (i
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denotes the prediction error yielded by the k-th predictor.
Combining (16) with (14), (15) and (17), after elementary
calculations, one arrives at

] -M/B

We note that if the one-step-ahead prediction errors are re-
placed with the so-called matching errors (deleted residuals),
the expression (18) is identical with that derived in [11] for
the purpose of combining results yielded by several signal
smoothers (the smoothed estimates depend on both past and
‘future’ signal values).

For wide decision windows, i.e., for large values of M, even
small differences in the prediction error statistics result in
large differences in the values of the corresponding credi-
bility coefficients. Consequently, the major contribution to
y(t + 1]¢) in (12) is due to the predictor that was ‘recently
the best’. In such a case the weighted estimation rule (12)
de facto reduces itself to y(t + 1|t) = yj(,) (¢ + 1|t) where
k*(t) = argmax|<x<xg U (t). When B = 2, maximization of
Hi(7) is equivalent to minimization of Yz, |&(i)|*. This
can be regarded as the time-localized vers1on of the Rissa-
nen’s predictive least squares principle [12].

Y le(i)P (18)

i€T(t)

P (1) o< l

4. EXPERIMENTAL AND SIMULATION RESULTS

Because of the lack of space, only the results obtained for
the signal-oriented version of the proposed algorithm will be
reported here.

In our first experiment we analyzed a real-world acoustic sig-
nal - the sound of a motorcycle engine noise, sampled at a
frequency 1.1 kHz. The four seconds long recording includes
the periods of acceleration (twice), gear shift and braking.
The spectrogram of the signal, which consists of K = 12
harmonics, is shown in Fig. 1. Fig. 2 shows the time plot
of this signal, along with the a posteriori estimation errors
€,(t) = s(t) — 5(t|t) yielded by the unconstrained algorithm
(5) and by the constrained algorithm (7)—(8). Note that the
constrained algorithm performs considerably better than the
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Figure 1: Spectrogram of the engine-induced acoustic noise
used in the real-world experiment.

unconstrained one. The same adaptation gains were used in
all sub-algorithms. The adaptation gain u was set to 0.05.
The remaining two gains were chosen in agreement with the
rules of thumb proposed in [4] : Y= u?/2, n = u3/8. The
width M of the local decision window was equal to 25. The
complex-valued version of the signal was obtained using the
Hilbert transform.

The second experiment involved the artificially generated
multi-harmonic signal governed by (4), consisting of 4 har-
monic components embedded in Gaussian or Laplacian noise
with standard deviation 6, = 0.05. The frequencies and am-
plitudes of this signal were varying with time according to

o(t) =7 [o 04+ 0.02sin 52000] @t = ka(?)
1 . 27
ai(t) :ﬁ [0.1+0.0551n<5000\/_ ¢k>}
b X[0,27), k=1,....4

where % [0,27) denotes uniform distribution over [0,27).
The width of the decision window and the values of the adap-
tation gains were the same as in the first experiment.

Table 1 summarizes estimation results obtained for 250
Monte Carlo experiments - each simulation run corresponded
to a different realization of noise and different initial phase
shifts ¢, k = 1,...,4. The length of each test signal was
equal to 5000. First, for each simulation run, the mean-
squared values of the a posteriori errors €,(t) were com-
puted by means of time averaging (to eliminate the initial
transient effects, the results obtained for the first 250 signal
samples were discarded). Then, the mean and median esti-
mation scores were evaluated as ensemble means and ensem-
ble medians, respectively.

Note a dramatic improvement (by 3 to 6 orders of magnitude)
provided by the constrained algorithm. Large differences be-
tween the mean scores and median scores, observed for all
sub-algorihms, reveal one of the sources of this improvement
— effective ‘elimination’ of sub-algorithms which lose track
of the harmonics they were initially locked on (which usu-
ally results in an attempt to track a whole bunch of nonexis-
tent harmonics). Another important factor is the coordinated
search enforced by the comb structure of each sub-algorithm.



Table 1: Mean and median estimation scores obtained for the nonstationary signal with four harmonics, embedded in
Gaussian (/") or Laplacian (%) noise: U — unconstrained algorithm; Sy, S,, S3, S4 — four sub-algorithms of the

constrained algorithm; C — constrained algorithm.

mean SCores

D U Si S S3 S4 C
A | 1.27E—005 | 3.10E—007 | 1.63 E—006 | 2.26 E—006 | 2.33 E—005 | 2.53 E—011
% | 1.36 E—005 | 8.47E—008 | 1.04 E—006 | 3.06 E—006 | 3.37 E—005 | 2.65E—011
median scores
D U S1 S S3 Sy C
A 1 9.03E—006 | 2.74E—011 | 3.17E—-011 | 3.52E—011 | 2.65E—011 | 2.41 E-011
< | 1.03E—005 | 295E—011 | 3.21 E—011 | 3.64E—011 | 2.85E—011 | 2.50E—011
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