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ABSTRACT

In this contribution, we propose a method to enhance single chan-
nel speech signals which are degraded by wind noise. In contrast
to common speech enhancement systems, a special processing is re-
quired due to the highly non-stationary characteristics of wind sig-
nals. The basic idea is to exploit the fact that wind noise is mainly
located at low frequencies and thus, a large frequency range of the
speech is almost noise free. Techniques which artificially extend
the bandwidth of telephone speech towards lower frequencies are
applied to replace the highly disturbed low frequency parts. Here,
the discrete model of speech production is used to reconstruct the
required parts of the speech signal. Important parameters for this
model are pitch frequency, the spectral envelope and a spectral gain.
In this context, an evaluation is carried out which determines the
robustness of several pitch estimators against wind noise. The fre-
quency range of the reconstructed speech is finally adapted to the
actual level of wind noise. Based on realistic scenarios it is shown
that the influence of the wind noise can greatly be reduced by the
proposed concept. This includes a comparison with a state-of-the-
art speech enhancement system and an algorithm specially designed
to reduce wind noise.

1. INTRODUCTION

Nowadays, mobile communication devices can be used in almost
any acoustic environment. This leads to the drawback that the qual-
ity and intelligibility of the captured speech signals can be greatly
degraded by interfering background noise. Most of the occurring
noise types such as inside car noise, babble noise or traffic noise
can be assumed to be stationary over a certain period of time. In
contrast to that, wind noise is characterized by a high degree of in-
stationarity. Well-established speech enhancement systems for sin-
gle channel signals apply spectral weighting based on an estimate
of the short-term power spectral density (PSD) of the noise signal
(e.g. [1], [2]). State-of-the-art algorithms for the estimation of the
noise PSD can be found e.g. in [3], [4]. Despite, these methods are
able to track time-varying noise signals, for wind noise they deliver
insufficient estimates.

Hence, the reduction of wind noise requires a special class of
speech processing. In [5] a dual channel system was presented
which exploits the low correlation of the wind signal between the
channels. However, for many applications the use of more than one
microphone is not feasible. Single channel methods, which were
proposed in the past based on spectral weighting without directly

estimating the noise PSD can be found in [6], [7].

In contrast to these speech enhancement methods, our new ap-
proach completely removes distorted parts from the speech signal
and replaces them by artificially generated speech samples. Tech-
niques which are used for artificial bandwidth extension are applied
here, e.g. [8]. The aim of these techniques is to blindly estimate a
wideband signal (50-7000 Hz) from a given narrowband telephone
signal (300-3400 Hz). This is mainly related to the reconstruction
of the higher frequency range (3400-7000 Hz). Figure 1 shows the
long-term power of speech and wind signals averaged over a du-
ration of 30 seconds. Based on the property that the wind noise
is mainly located at low frequencies (0-500 Hz), our method uses
parameters extracted both from the higher frequency range and the
noisy spectrum to extend the undistorted speech towards lower fre-
quencies. The artificially generated speech is provided by a discrete
time model of speech production, e.g. [2].
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Fig. 1. Long-term power spectra of speech and wind signal

The remainder is organized as follows. First, the discrete model
of speech production is introduced, followed by an overview of the
proposed system for wind noise reduction. Section 4 shows the es-
timation of the parameters for the synthesis of the low frequency
speech parts. For the adaptation of the system to the actual wind
noise power, a wind noise detection method is presented in Section
5. An evaluation based on real measurements is given in Section 6.
This contribution is finally summarized in Section 7.
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2. DISCRETEMODEL OF SPEECH PRODUCTION
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Fig. 2. Discrete model of speech production (c.f. [2])

A commonly used model for the process of speech production
is given by the system shown in Fig. 2 (cf. [2]) which provides a
synthetic speech signal in the z-Domain

Ssyn(z) = gS · E(z)H(z). (1)
Based on the type of the speech segment the time domain exci-

tation signal e(k) is generated, where k is the discrete time index.
For voiced speech segments a periodic impulse sequence

evoiced(k) =
+∞∑

i=−∞

δ(k − iN0) (2)

and for unvoiced segments a white noise signal is used as ex-
citation signal. N0 is referred to the pitch period and defines the
time lag of the impulses δ in the voiced speech segments. The gain
factor gS determines the amplitude of the excitation signal. The hu-
man vocal tract is modeled by filtering the excitation signal with the
time-varying autoregressive synthesis filterH(z).

3. SYSTEMOVERVIEW

The structure of the proposed system is depicted in Fig. 3. The noisy
input signal x(k) is assumed to be an additive superposition of the
clean speech signal s(k) and the wind noise n(k). The entire system
applies a frame-based signal processing by first segmenting the input
signal into overlapping frames with index λ, reducing the wind noise
and then constructing the output signal ŝ(k) via overlap-add.

The noise-free part of the input signal xHP (λ) pass the adap-
tive high-pass filter with a variable cut-off frequency fc in the up-
per branch of the system. The lower branch represents the artifi-
cial bandwidth extension. First the parameters N0, a, gS of the
speech production model are estimated from the prefiltered noisy
signal x̃(λ) and then a synthetic signal ssyn(λ) is generated using
the model introduced in Section 2. In [8] this model was chosen
for an artificial extension of narrowband telephone speech towards
higher frequencies. Essential parameters for this model are the pitch
periodN0, the linear predictive coding (LPC) coefficients a1, ..., aM

for the vocal tract filter H(z) and a gain factor gS . The prefilter in
Fig. 3 is realized by a fixed high-pass filter which reduces the influ-
ence of the wind noise on the parameter estimation.

The spectral power distributions of wind noise and unvoiced
speech segments shows only a minor overlap and can thus be sup-
pressed by the adaptive high pass filter. Hence, in our system the
high-pass filtered signal xHP (λ) provides a good noise reduction
for unvoiced speech segments. Besides, the wind signal as well as
the unvoiced speech are both noise like signals. Consequently, a
certain amount of residual noise leads to no severe degradation of
the unvoiced speech. Thus, the speech production model of Fig. 2
is only used for the generation of voiced speech segments. The
voiced/unvoiced decision can be derived from the pitch estimators
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Fig. 3. Proposed wind noise reduction system

presented in 4.1. For a voiced excitation signal equally spaced pulses
are generated in the time domain based on the actual pitch period us-
ing Eq. 2.

Finally, the high-pass filtered parts of the original signal xHP (λ)
and the low-pass filtered synthetic signal ssyn,LP (λ) are merged to
provide an enhanced speech signal as depicted in Fig. 4. The red
curve presents the artificially generated speech signal while the blue
curve shows the unprocessed input signal. Both the high-pass and
the low-pass filter are realized as FIR filters with complementary
passbands. The wind noise detector in Fig. 3 determines the variable
cut-off frequency fc between these two parts based on the actual
power of disturbance. Thus it can be guaranteed that the speech
signal will not be modified by the system in noise-free conditions.
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Fig. 4. Merging of synthetic and original speech signal

4. PARAMETER ESTIMATION

4.1. Pitch Period

A broad variety of algorithms to determine the pitch period in speech
signals exists, cf. [9]. Due to the frame based processing of the
signal only short-term pitch estimators are considered here. These
methods calculate the pitch period of short signal segments. Inves-
tigations on the robustness of pitch estimators in terms of additive
noise are mostly carried out with white Gaussian noise, cf. [10],
[11], [9]. Results from this investigations are not valid here because
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of the non-whiteness of wind signals. A performance study of sev-
eral pitch estimators is carried out in this section. The goal is to
identify the method which shows the most reliable results during the
occurrence of wind noise. Subsequently, a voiced/unvoiced classifi-
cation and a smoothing of the pitch estimate is proposed.

It turns out that during the occurrence of wind noise algorithms
working in the time domain are much more error-prone compared to
frequency domain methods. Therfore three frequency-domain esti-
mators and one time-domain estimator used as a reference are inves-
tigated in more detail in the following.

• CEP: In [12], a pitch estimator working in the cepstrum is
proposed. This transform leads to a separation of the excita-
tion signal and spectral envelope described above. The lower
cepstral coefficients represent the spectral envelope while the
pitch frequency and its harmonics are mapped to a single
higher cepstral coefficient. This results in a local maximum
in the cepstrum. Furthermore, investigations have shown that
the wind noise mainly effects the lower cepstral coefficients
which correspond to the spectral envelope of the speech sig-
nal.

• HPS: The method proposed in [13] called Harmonic Product
Spectrum takes advantage of the harmonic structure of the
voiced segments of a speech signal. In this case the signal
spectrum consists of the pitch frequency and equally spaced
harmonics. Although the pitch frequency is often covered by
the low frequency wind noise the higher harmonics are mostly
undistorted. The HPS is defined by a weighted product of
the harmonics for a potential pitch frequency and the actual
short-term spectrum. The final estimate is then given by the
frequency which maximizes the HPS.

• PEFAC: Similar to the HPS, the Pitch Estimation Filter with
Amplitude Compression exploits the harmonic structure of the
speech signal [11]. Here, a convolution of the spectrum with
a filter function is applied. The filter function is constructed
in a way that all harmonic peaks are mapped to the pitch fre-
quency. In addition, the amplitude of parts of the spectrum is
compressed in order to suppress narrowband noise.

• AUTOC: Besides, an autocorrelation based time domain al-
gorithm [9] is evaluated. The pitch estimate is provided by
the local maximum in a fixed search range of the autocorrela-
tion. Other time domain methods as [14] or [10] show similar
results.

The described pitch estimators are evaluated with 5.6 minutes
of speech signals taken from [15]. This database provides real pitch
measured by a laryngograph as reference. The speech samples were
superposed by wind noise from real recordings. More details regard-
ing the recordings will be given in Sec. 6. In literature a common
measure to evaluate pitch estimators is the gross-error rate (GER)
which determines the number of pitch estimates which deviate more
than 20 % from the real pitch frequency [9]. Fig. 5 depicts the GER
for the four different estimators for different SNR values. For all
estimators the range of possible pitch estimates was limited to 50-
400Hz which is the normal frequency range for both female and
male speakers [9]. It can be seen that the methods operating in
the frequency domain clearly outperform the time domain algorithm
(AUTOC) in terms of estimation accuracy for SNR values below
10 dB. In total the cepstrum based method provides the most reliable
pitch estimate.

In the system shown in Fig. 3 the pitch estimate provided by the
cepstrum based method is used to produce the required excitation
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Fig. 5. Gross-error rate of pitch estimators

signal for voiced speech segments. To reduce the effect of single
outliers the actual estimated pitch frequency f̃0 is smoothed over
time using

f0(k) = αp · f0(k − 1) + (1− αp) · f̃0(k). (3)

The CEP pitch estimator is based on a local maximum search.
By means of the “peakedness” of this maximum a voiced/unvoiced
classification can be made for the speech synthesis. This is derived
by comparing the local maximum with an adjacent range in the cep-
stral domain. The ratio V of the local maximum and the average
value of the search range cmin, ..., cmax of the complex cepstrum
xcc(c) is applied is a detection method for voiced speech method

V =
max{|xcc(cmin, ..., cmax)|}

mean{|xcc(cmin, ..., cmax)|}
. (4)

If V exceeds a certain threshold Vth the actual frame is classified
as voiced.

4.2. Vocal Tract Filter

As depicted in Fig. 2, the filter H(z) represents the human vocal
tract which is often approximated as an all-pole filter. A common
way to estimate this filter is to compute the LPC coefficients using
the Levinson-Durbin algorithm [2]. Fig. 6 shows the LPC spectra of
a voiced speech segment. The dashed lines illustrate the influence
of the wind noise on the spectral envelope. The clean input signal is
depicted by the black solid line. The LPC spectra of the unprocessed
noisy speech and the prefiltered noisy input are represented by the
dashed black and red lines, respectively. The momentary SNR in
this segment is -5 dB.

It can be seen that the wind noise effects mainly the low fre-
quency parts of the envelope and parts at frequencies higher than
4000Hz. The low frequency wind noise disturbance can easily be
suppressed by a high-pass filter which is realized by a fixed prefilter
as shown in Fig. 3. The high-frequency mismatch can be neglected
because these parts of the speech will pass the system without any
modification through the upper branch in Fig. 3. For the proposed
method we used the LPC coefficients of the prefiltered noisy input
signal. It turns out that using a high-pass filter with a constant cut-off
frequency of 200Hz results in a sufficient estimate of the LPC coef-
ficients from the noisy speech although, there are some deviations in
for extremely low frequencies (below 100Hz).
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Fig. 6. LPC spectra of a voiced speech segment, SNR = -5 dB

4.3. Gain Factor

The gain factor introduced in Fig. 2 controls the power of the excita-
tion signal. Ideally, the power of the reconstructed excitation signal
should be equal to the power of the excitation signal of the clean
speech signal. The residual signal of the LPC analysis described
in Sec. 4.2 is used for as an estimate of the clean excitation signal
power. Again, the prefiltered speech x̃(λ) is used to reduce the effect
of the wind signal. The constant factor γ is introduced to compensate
the high-pass effect on the power of the excitation signal.

gS = γ ·

√∑M−1

k=0
ẽ2HP (k)∑M−1

k=0
e2syn(k)

. (5)

5. WIND NOISE DETECTION

The detection of the occurrence of wind noise is necessary to adjust
the range of reconstructed speech. The intention is to determine the
disturbed frequency range in the actual frame. As shown in Fig. 1,
the wind noise signal has the main power distribution at low frequen-
cies which is rapidly descending towards higher frequencies. Thus,
using the power ratio between a low frequency range up to fH and
the whole frequency range is used as a wind indicator. This leads
to the heuristically chosen equation for the cut-off frequency fc be-
tween the original and the reconstructed speech, where μH is the
discrete frequency bin corresponding to fH :

fc(λ) = fmax ·

∑μH

μ=0
|X(μ, λ)|2∑M

μ=0
|X(μ, λ)|2

. (6)

The upper bound for the cut-off frequency is given by fmax

which determines the maximum frequency range of the artificially
generated speech. To prevent artefacts caused by sudden changes
of the cut-off frequency, fc is smoothed over time with a smoothing
factor αc.

6. EVALUATION

6.1. Experimental Setup

The proposed method is tested with wind noise recorded with a
mock-up mobile phone mounted in the hand-held position on an ar-
tificial head (HEAD acoustics HMS II.3 & HHP III). The recordings
were taken on a windy day with wind speeds up to 50 km/h on a roof
terrace. The wind noise was captured by a microphone (Beyerdy-
namic MM1) assembled to the mock-up phone without any kind of

wind screen. In order to have a reference for the evaluation the noisy
speech was generated by a superposition of clean speech from [15]
with the wind noise recordings. This may not represent non-linear
effects of wind noise such as clipping of the audio signal.

The frame length of the overlap-add system was set to 20ms
with 50% overlap. For a precise pitch estimation longer frames of
50ms were used for the cepstrum pitch estimator. The threshold Vth

for the voiced/unvoiced classification was set to 5. The order of the
LPC vocal tract filter was 20. Investigations showed that the correc-
tion factor for the gain factor in Eq. 5 should be chosen between 0.5
and 2 and was set to 0.5 for the evaluation. The smoothing factors αp

and αc were chosen to 0.3 and 0.8, respectively. The upper bound
for the reconstructed speech was set to fmax = 1500Hz. The fre-
quency fH for the wind noise detection in Eq. 6 was set to 100Hz.
The sampling frequency was 16 kHz.

6.2. Results

In Fig. 7 the spectrograms of noisy and enhanced signals are shown
at an input SNR of -5 dB. For a better view on the wind noise effects
only frequencies up to 4 kHz are depicted. It can clearly be seen
that signal parts influenced by the wind noise are removed in speech
pauses and replaced by the synthetic signal during speech activity,
respectively.

Fig. 7. Spectrograms of unprocessed (top), enhanced (middle) and
clean (bottom) speech at a SNR of -5 dB

Because of the non-linear filtering of the proposed method com-
mon quality measures like speech and noise attenuation can not be
applied. The evaluation is carried out with the Speech Intelligibility
Index (SII) [16] and the improvement of Perceptual Evaluation of
Speech Quality (ΔPESQ = PESQout−PESQin) [17]. The SII pro-
vides a value between 0 and 1 where a SII higher than 0.75 indicates
a good communication system and values below 0.45 correspond to
a poor system. The averaged results for different input SNRs are
shown in Fig. 8.

The proposed method is compared with a standard speech en-
hancement system with a MMSE estimator for both the noise PSD
[3] and the clean speech DFT coefficients [1] and a method which
was explicitly designed for wind noise reduction [7]. The latter uses
an adaptive postfilter concept based on low order LPC spectra of
speech and wind. The chosen range of the input SNR for the eval-
uation reflects wind noise levels which occur during real outdoor
measurements.

The evaluation shows an enhancement in terms of intelligibility
for all algorithms over the whole SNR range. Among the inves-
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Fig. 8. ΔPESQ and SII of unprocessed and enhanced speech

tigated methods the proposed system achieves the highest SII im-
provements. TheΔPESQ score shows only an improvement for the
proposed algorithm. This especially applies for the SNR range of
-20 to 0 dB, which describes realistic scenarios. Here, the MMSE
noise reduction even shows a degradation of the quality expressed
by the negative values. Informal listening tests confirmed the results
of this experiments. Nevertheless, there are some audible artefacts
resulting from the synthetic speech which may occur in very low
SNR conditions when large parts of speech have to be reconstructed.

7. CONCLUSIONS

In this contribution, we have introduced a single microphone sys-
tem for the reduction of wind noise. It was shown that state-of-
the-art methods, which require an accurate noise estimate have only
a limited performance of enhancing the signal because of the non-
stationary characteristics of wind noise. Our method uses techniques
from artificial bandwidth extension to replace the disturbed parts of
the speech signal. In this context, the performance of several pitch
estimators was investigated. Experimental results with real wind
noise measurements showed that the proposed system outperforms
both a standard system given by [3] and [1] and a method explicitly
designed for wind noise reduction [7].
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