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ABSTRACT

The problem of sparse signal reconstruction in the presence

of possibly impulsive noise is studied. The state-of-the-art

greedy algorithms, Iterative Hard Thresholding (IHT), Or-

thogonal Matching Pursuit (OMP), and Compressive Sam-

pling Matching Pursuit (CoSaMP) are robustified in order to

cope with impulsive noise environments and outliers. We em-

ploy robust weighting of the residuals and replace the least-

squares estimates byM -estimates of regression. Also a robust

M-estimation based ridge regression is considered and shown

to possess high potential when utilized in CS algorithms.

Index Terms— compressive sensing, matching pursuit,

greedy algorithms

1. INTRODUCTION

Compressed sensing (CS) has attracted a lot of research in-

terest recently; see [3] and references therein. CS exploits

the fact that many signals that arise in nature are sparse, i.e.

they can be represented as a linear combination of relatively a

small number of elementary signals called atoms. The prob-

lem may be formulated as follows. Let s ∈ R
N be aK-sparse

signal with K ≪ N nonzero elements, Φ be anM ×N mea-

surement matrix, with M < N , and

y = Φs+ ǫ, (1)

be the measurements corrupted by noise ǫ. The objective is

to reconstruct the signal vector s knowing the measurements

y, the measurement matrix Φ, and the sparsity K . The fol-

lowing optimization problem gives a K-sparse solution ŝ =
argmins ‖y − Φs‖2 subject to ‖s‖0 ≤ K , where ‖ · ‖p de-

notes the ℓp norm. This optimization is known to be NP-hard.

Hence suboptimal reduced complexity CS reconstruction al-

gorithms have been proposed [16]. These can be roughly

divided into two classes, convex-relaxation algorithms and

greedy algorithms. Methods in the convex-relaxation class

are based on replacing the nonconvex ℓ0 norm of the signal by

ℓ1 norm (or some other suitable norm or pseudo-norm) and

solving a convex optimization problem instead of a NP-hard

problem; see, e.g., [2, 7]. Greedy methods are iterative meth-

ods that contain a step in which the column(s) of Φ which are

most correlated with the current residual vector are identified.

CoSaMP [12], OMP [15], Subspace Pursuit [6], and IHT [1]

all belong to this class.

Recently CS in the presence of impulsive noise has been

addressed by several authors. In [4], a reconstruction algo-

rithm was proposed based on the minimization of the ℓ1 norm

subject to a nonlinear constraint on the signal based on the

Lorentzian pseudo-norm, but the algorithm suffers from high

complexity. Later in [5], the authors proposed a computation-

ally less demanding approach in which IHT was robustified

by introducing the Lorentzian pseudo-norm of residuals into

each iteration; called Lorentzian IHT (LIHT) hereafter. In

[13], the authors used ℓ0-regularized least absolute deviation

(LAD) regression model and proposed an algorithm utilizing

weighted median regression to obtain an approximate solu-

tion. The method is computationally demanding. Moreover,

the selection of parameters of the algorithm, namely number

of iterations and decaying speed, is not an easy task and is

done by trial and error.

In this paper, we propose robust versions of CoSaMP, IHT

and OMP. We utilize robust weighting of the residuals and

robust regression in place of least squares (LS) regression.

The proposed methods are compared with LIHT [5] un-

der two different noise models. Section 2 reviews the robust

M -estimation of regression coefficients and ridge regression

approach. Then, in Section 3, we review the CoSaMP, IHT

and OMP algorithms and propose their robust modifications.

In Section 4, we study the performance of the proposed meth-

ods by simulations. Finally, Section 5 concludes the paper.

Notations: For a vector u, a matrix X, and a support set

A, ui denotes the i-th component of u, xi denotes the (trans-

posed) ith row vector of X, vector uA (matrix XA) denotes

the components (columns) of u (X) corresponding to sup-

port set A, HK(·) denotes the operator which sets all but the

largest (in magnitude) K elements of its vector-valued argu-

ment to zero and I(·) denotes the indicator function.

2. M-ESTIMATES OF REGRESSION

Suppose now that a set T of size L (where K ≤ L << M )

has been selected with an aim that it should include the signal

support, supp(s) ⊆ T . Hence we can consider the linear re-

gression model y = ΦT sT +ǫ with more measurements than

regressors and obtain a robust estimate ŝT via M -regression

method. Then an estimate of the signal support are the indices
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of the K-largest elements of sT . For notational convenience,

we suppress the subscript T fromΦ and s. The error terms are

assumed to be i.i.d. from a symmetric continuous distribution

with an unknown scale parameter σ > 0.

Let ei = ei(s) = yi − φ
⊤
i s denote the ith residual for a

candidate vector s. At this point assume that the scale pareme-

ter σ is known. Then theM -estimate of regression coefficient

ŝ solves the M -estimating equation

M
∑

i=1

ψ(ei/σ)φi = 0, (2)

where ψ is continuous, odd function and preferably (for ro-

bustness) bounded.The obtained estimate often possesses a

maximum likelihood (ML) interpretation if ψ(e) ∝ − log f0(e),
where f0(·) denotes the standard form (σ = 1) of the error

density. Express ψ(e) = e·w(e) and writewi , w(ei/σ) and

W = diag(w1, . . . , wM ). In case of zero residual (e = 0),

we set w(e) = 0. Then (2) rewrites as

ŝ = (Φ⊤WΦ)−1Φ⊤Wy. (3)

In the case of normal (Gaussian) errors, the unique ML-

estimate of s is obtained with ψ(e) = e (so w(e) = 1), which

correspond to the LS-estimates. Excluding the normal case,

the estimating equation (3) is implicit since the weights wi
on the right hand side also depend on s through the residual

ei = ei(s). For example,

ψC(e) = 2e/(1 + e2), wC(e) = 2/(1 + e2), (4)

are the respective psi- and weight functions of the Cauchy

error distribution. Hence an algorithm to find the solution ŝ

to (3) is needed. Huber’s weight function is defined as

wH(e) , min(1, k/|e|) (5)

and ψH(e) = clipk(e) , e · wH(e) = max[−k,min(k, e)].
The popular Tukey’s biweight (or bisquare) weight function is

wB(e) ,
{(

1−
e2

c2

)

+

}2

, (6)

with ψB(e) = e · wB(e), where a+ = max(0, a). Note that

k and c above are user-defined tuning (threshold) constants

that affect robustness (and efficiency) of the methods; see

[10] for details. In our simulations we use the standard val-

ues k = 1.345 and c = 4.685 which yield 95% efficiency

in Gaussian noise [10]. Huber’s ψ function is also an MLE

for the “least favorable distribution” but Tukey’s ψ-function

can not be linked with any error density and hence does not

have an ML-interpretation. Functions (4)-(6) are depicted in

Figure 1. Note that Huber’s ψ-function can be interpreted as

winzorizing (“clipping”) function. Tukey’s biweight penal-

izes the most large residuals as it strongly redescends to zero.

The M -estimate is commonly calculated by an Iteratively

Re-weighted LS (IRLS) algorithm, denoted byMFIT(y,Φ, w),
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Fig. 1: Functions ψ and w where ψ(e) = e · w(e) of (4)-(6).

where w is the weight function. Since σ is unknown in prac-

tice, it is commonly replaced at each iteration by a robust

estimate σ̂ calculated from the current residuals. We use

the median absolute deviation (MAD) σ̂ = MAD(e) =
1.4286 · medi(|ei − medi(ei)|) which is the default choise

in robustfit routine of Matlab, where med(·) denotes

the median function. Another approach is to use joint M -

estimation of regression and scale such as the method intro-

duced in [11] called robust Cauchy-basedM -estimation.

Robust ridge regression: In theM < N case (more vari-

ables than responses), the ridge regression estimate [8] ŝ min-

imizes a penalized residual sum of squares
∑M

i=1 e
2
i +λ‖s‖22.

Then the bigger the ridge (shrinkage) parameter λ, the greater

the amount of shrinkage of coefficients. See [9] for details

on regularization parameter selection. The method is called

Tikhonov regularization in many other fields. This approach

can be generalized by considering a penalized loss function
∑M
i=1 ρ(ei/σ) + λ‖s‖22, where ψ = ρ′. We thus define the

ridge regression M -estimate (RRM) as the stationary point

of the loss function, i.e. ŝ is the solution to the ridge M -

estimating equation −
∑n
i=1 ψ(ei/σ)(φi/σ) + λs = 0, i.e.:

ŝ = (Φ⊤WΦ+ λσ2I)−1Φ⊤Wy (7)

where W is as earlier; see also [14]. If ψ(e) = e and σ = 1,

then the regular ridge estimator is obtained. When robust

weight functions (4)-(6) are used, then the estimating equa-

tion is implicit and one can employ IRLS approach but now

replacing (3) by (7) at each iteration of the algorithm. Fur-

thermore, we stop after tmax iterations to reduce the compu-

tation load and call the estimate as tmax-step RRM-estimator.

In our simulations, we use tmax = 5 and λ = 5.5 which usu-

ally yield a sufficiently robust estimate. Again we utilize the

MAD estimate σ̂ to (re)scale the residuals at each iteration.

Note that ridge regression cannot be used for sparse recovery

alone as it does not provide sufficiently sparse solution. How-

ever, it could be used to find an estimate of a sparse support,
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Table 1: Ridge Regression M-estimate (RRM) algorithm

Input: y, Φ, and an initial estimate s0 of s

Output: stmax an estimate of s

Initialization: t← 0

repeat

t← t+ 1

e← y −Φst−1 {Update the residuals}

σ̂ ← MAD(e) {Calculate the robust estimate of scale}

[w]i ← w(ei/σ̂), W← diag(w) {Update the weights}

st ← (Φ⊤WΦ + σ̂2λI)−1Φ⊤Wy {weighted LS estimate}

until t ≥ tmax

e.g. as Ω = supp(HK(ŝ)). See also Table 4. The summary

of the algorithm is given in Table 1.

3. ROBUST GREEDY CS RECONSTRUCTION

3.1. The robust CoSaMP algorithm

CoSaMP [12] is comprised of the following four steps:

Step 1: Update the residuals using the current estimate of s.

Step 2: Identify the 2K columns of the measurement matrix

correlated with the residual vector the most and merge it with

the support of the current estimate of s.

Step 3: Estimate the signal vector by LS-regression using the

merged support set as the selected variables.

Step 4: Prune the estimate by retaining only the K largest

(in magnitude) coefficients.

To robustify CoSaMP, we make three modifications to

the method. First, we use a robust initial estimator s0 of

s. Note that the initial estimate is s0 = 0 in the orig-

inal CoSaMP algorithm. Using an initial robust estima-

tor both decreases the number of iterations of the algo-

rithm and improves on the robustness and accuracy of the

algorithm. Second, we identify largest correlations be-

tween the columns of Φ and the residual pseudo-values

eψ = ψ(e/σ̂) , (ψ(e1/σ̂), . . . , ψ(eM/σ̂))
T . Due to relation

ψ(e) = ew(e) this can be interpreted as downweighting the

large residuals. For example, if we use Huber’s psi-function

ψ(e) = clipk(e) we are winzorizing (or “clipping”) after a

threshold k. Also note that ψ(e) = e (so w(e) = 1) in the

original CoSaMP. Third, we replace the LS-estimator in Step

3 by a robust M -estimator of regression that uses a robust

weight function w(·) such as (4)-(6). The summary of the

Robust CoSaMP algorithm is given in Table 2.

3.2. Robust Iterative Hard Thresholding Algorithm

Iterative Hard Thresholding (IHT) [1] is an efficient greedy

algorithm which optimizes the cost function J(s) = ‖y −
Φs‖2 under the constraint ‖s‖0 ≤ K . The K-sparse vector s

is found by iterating st+1 = HK(st − µt∇J(st)) until con-

vergence. Above µt is the step size and s0 = 0. Substituting

∇J(s) = −Φ⊤e, where e = y −Φs, we obtain

st+1 = HK(st + µtΦ⊤et),

Table 2: Robust CoSaMP algorithm

Input: y, Φ, sparsity levelK and an initial estimate s0 of s

Output: st an estimate of s

Initialization: t← 0

repeat

t← t+ 1

Step 1:

e← y −Φst−1 {Update the residuals}

σ̂ ← MAD(e) {Calculate the robust estimate of scale}

eψ ← ψ(e/σ̂) {residual pseudo-values (downweighting) }

Step 2:

Ω← supp(H2K(Φ⊤
eψ)) {Identify the 2K largest correlations}

T ← Ω ∪ supp(st−1) {Merge the supports}

Step 3:

β ← MFIT(y,ΦT , w) {Compute theM-estimates of regression }

b← 0M×1, bT ← β

Step 4:

st ← HK(b) {Prune the signal estimate}

until
‖st−s

t−1‖

‖st‖
≤ δ or t > tmax.

Table 3: Robust OMP algorithm.

Input: y, Φ, sparsity levelKOutput: st an estimate of s

Initialization: t← 0, Ω0 ← {}, e← y, s← 0

repeat

t← t+ 1

σ̂ ← MAD(e) {Calculate the robust estimate of scale}

eψ ← ψ(e/σ̂) { Calculate the residual pseudo-values }

Ωt ← Ωt−1 ∪ supp(H1(Φ
⊤eψ)) {Add the index of the atom correlated

with the residual pseudo-values the most to the index set.}

β ← MFIT(y,Φ
Ωt , w) {Compute the M-estimates of regression }

e← y −Φ
Ωtβ {update the residuals}

until |Ωt| ≥ K

s
Ωt ← β

As in M -regression, replacing the non-robust ℓ2-objective

function by a more general objective function J(s) =
∑M
i=1 ρ

(

(yi − φ⊤i s)/σ
)

, yields ∇J(s) = −(1/σ2)Φ⊤We,

where W is the diagonal weight matrix defined as in Section

2 and σ is the scale. This ends up with

st+1 = HK(st + (µt/(σ̂t)2)Φ⊤Wtet), (8)

as the update equation, where Wt is the diagonal matrix with

weights wti = w(eti/σ̂
t), and as in M -regression, the practi-

cally unknown scale parameter σ is replaced by a robust esti-

mate of it at each iteration t, e.g., σ̂t = MAD(et).
Let g denote the negative gradient at the current estimate

st, i.e. g = (σ̂t)−2Φ⊤Wtet, and Γt = supp(st). As-

suming that we have identified the correct support at itera-

tion t, one approach for finding a reasonable (namely, eas-

ily computable) step size µt for the gradient ascent direction

sΓt+µ
tgΓt is minimizing the weighted sum of squared errors

(WSSE) minµ
∑M

i=1 w
t
i(yi−φ⊤i (s

t
Γt +µgΓt))

2. After some

elementary calculations

µt =
(σ̂t)2g⊤ΓtgΓt

g⊤ΓtΦ
⊤
ΓtW

tΦΓtgΓt
. (9)
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Table 4: Comparing support recoveryH2K(ΦT
eψ) of a sparse sig-

nal when (N,M,K) = (512, 128, 5). Cauchy, biweight and RRM

exhibit relatively high robustness in Cauchy noise while maintaining

comparable performance to the ordinary methods in Gaussian noise.

Gaussian Noise Cauchy Noise

ψ-function PFI NIC PFI NIC

identity (ordinary LS) 94.38 4.943 0.09 0.513

Cauchy 91.92 4.918 31.28 4.025

Biweight 91.6 4.915 29.78 3.986

Ordinary Ridge estimator 96.88 4.968 0.01 0.425

RRM (Cauchy) 92.46 4.924 37.2 4.141

RRM (Biweight) 89.09 4.886 33.84 4.06

When we use µt as above and the found support Γt+1 of

st+1 is the same as Γt, then we are quaranteed to have a max-

imal reduction in WSSE. If Γt+1 6= Γt, then the optimality of

this stepsize is no longer guaranteed. In this case, if the new

objective function
∑M

i=1 ρ((yi −Φ⊤i s
t+1)/σ̂t+1) is smaller

than the old objective function
∑M
i=1 ρ((yi −Φ⊤i s

t)/σ̂t), we

still accept st+1 as the new estimate, otherwise we set µt ←
µt/2 and recalculate a new proposal from (8). This is con-

tinued until a new proposal with smaller objective function is

obtained, which is then accepted as the new estimate st+1.

3.3. The robust OMP algorithm

OMP [15] is an iterative greedy algorithm that selects at each

step the column which is most correlated with the current

residuals, and iterates it until K distinct atoms have been se-

lected. Due to the lack of space we do not discuss the OMP

algorithm in detail here and only introduce its robust ver-

sion. Similar to robust CoSaMP, we use correlation between

columns ofΦ and residual pseudo-valuesψ(e) and exploit ro-

bust M-regression for estimating the parameter vector in each

step. The summary of robust OMP is given in Table 3.

4. SIMULATION RESULTS

The simulation part of this paper contains three experiments.

In the first simulation example we study how the residual

weight function w used in Step 1 affects the support recov-

ery of a sparse signal in the identification step (Step 2) of the

CoSaMP algorithm. In this experiment the length of signal

is N = 512, the number of measurements is M = 128, the

sparsity level is K = 5, the number of random trials is Q =
10000. The elements of the measurement matrix Φ are drawn

from N (0, 1) and its columns are normalized to have unit

norm. Table 4 reports the average Percentage of Full Iden-

tification (PFI), PFI , 100
Q

∑Q
q=1 I(supp(s[q]) ⊂ Ω[q]) and

the average Number of Identified Components (NIC), NIC ,
1
Q

∑Q
q=1 |supp(s[q]) ∩Ω[q]| at the first iteration of the algo-

rithm and with s0 = 0 given as the initial estimate. Above

s[q] and Ω[q] are , respectively, the true signal and the the 2K
support set calculated in Step 2 of the CoSaMP algorithm in

the q-th trial. The amplitude of all K nonzero elements of

s is set to 10, and the two noise models considered here are
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Fig. 2: MSE (up) and PSR (down) in reconstructing a sparse signal

by five different sparse reconstruction methods in the presence of

ε-contaminated noise. Robust CoSaMP and Robust OMP are both

superior to LIHT unless for large ε, which less happens in pactice.

Cauchy distribution with scale σ = 1 and zero-mean Gaus-

sian with variance one. Table 4 provides figures for the fol-

lowing functions: the original CoSaMP weight ψ(e) = e,
the robust functions (4) and (6), and the ridge regression es-

timators discussed in Section 2. As can be seen, while in

the Gaussian case the identity function (ψ(e) = e, so weight

w(e) = 1) used in the original CoSaMP works very well (as

expected since it corresponds to optimal ML-score function

ψ(·) for Gaussian errors), its performance severely degrades

in the presence of heavy-tailed Cauchy noise. On the other

hand, RRM has the best performance in Cauchy noise. The

performances of Cauchy (with weight function (4)) and bi-

weight (with weight function (6)) are very close to RRM.

The goal of the next two examples is to evaluate the

performance of robust CoSaMP, robust OMP, and robust

IHT for two different non-Gaussian noise models. The

measures of performance are the Mean Squared Error de-

fined as MSE , 1
Q

∑Q
q=1 ‖s

[q] − ŝ[q]‖22, and the Propor-

tion of full Support Recovery (PSR) defined as PSR ,
1
Q

∑Q
q=1 I(supp(s[q]) = supp(ŝ[q])) where ŝ[q] is the re-

constructed signal in the q-th trial. In both experiments we

have (N,M,K) = (1024, 64, 4) and the number of trials

is Q = 10000. In the second experiment, we use the ε-
contaminated noise model (1 − ε)N (0, σ2

1) + εN (0, σ2
2)

for each component of the noise vector ǫ. We set σ1 = 1,

σ2 = 10, and ε is varied from 10−3 to 0.25. Note that ε is
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Fig. 3: MSE (up) and PSR (down) in reconstructing a sparse signal

by five different sparse reconstruction methods in the presence of

α-stable noise. Graphical conventions are the same as in figure 2.

Robust CoSaMP and Robust OMP both surpass LIHT.

the probability of obtaining noise from an impulsive (higher

variance) noise model and it describes the proportion of ex-

pected outliers in the sample. We compare five reconstruction

algorithms: CoSaMP, IHT, Robust IHT with Cauchy weights

(which coincides with LIHT [5]), robust OMP and robust

CoSaMP both with Cauchy weights. The nonzero elements

of s have fixed amplitude equal to 1. As can be seen in Fig. 2,

the robust CoSaMP and robust OMP both outperform LIHT

unless for large values of ε, which rarely happen in practice.

In the third experiment, we examine the performance in

centered symmetric α-stable noise with scale parameter σ =
0.2 when α is varied from α = 1 (Cauchy distribution) to

α = 2 (Gaussian distribution). As can be seen in Fig. 3, both

robust CoSaMP and robust OMP are superior to LIHT.

5. CONCLUDING REMARKS

We proposed robust versions of three greedy CS reconstruc-

tion algorithms, the CoSaMP, OMP and IHT. The update

of residuals were robustified by a robust weighting scheme

and the non-robust LS estimation was replaced by robust M -

estimation of regression. Simulations showed that the pro-

posed modifications significantly improved on the accuracy

of sparse reconstruction in the heavy-tailed noise comparing

to the state-of-the-art method, LIHT. Moreover, the robust CS

algorithms were formulated for general weight functions.
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