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ABSTRACT
Common spatial patterns (CSP) and probabilistic CSP (PCSP)
are popular methods for extracting discriminative features
from electroencephalography (EEG), but they are trained on
a subject-by-subject basis so that inter-subject information is
neglected. When only a few training samples are available
for each subject, the performance is degraded. In this paper
we present a method for Bayesian CSP with Pitman-Yor pro-
cess (PYP) priors, in which spatial patterns (corresponding
to basis vectors) are simultaneously learned and clustered
across subjects using variational inference, allowing for a
flexible mixture model where the number of components are
also learned. Spatial patterns in the same cluster share the
hyperparameters of their prior distributions, so that the in-
formation transfer is encouraged between subjects involving
similar spatial patterns. Numerical experiments on BCI com-
petition IV 2a dataset demonstrate the high performance of
our method, compared to existing PCSP and Bayesian CSP
with a single prior distribution.

Index Terms— Common spatial patterns, EEG classifi-
cation, nonparametric Bayesian methods

1. INTRODUCTION

Multi-subject EEG classification considers EEG from multi-
ple subjects, each of whom undergoes the same mental task,
so that such brain waves reflect task-specific and subject-
specific characteristics, as well as inter-subject variations.
Common spatial patterns (CSP) is a popular discriminative
EEG feature extraction method, which is useful for learning
a subject-specific spatial filter [1]. Learning common spatial
patterns was also cast into a probabilistic framework leading
to probabilistic CSP (PCSP) [2], i n which linear Gaussian
generative models of two classes with a shared basis matrix
are jointly learned to infer spatial pattern vectors correspond-
ing to column vectors of the shared basis matrix. However,
CSP and PCSP are subject-specific methods, so other sub-
jects’ information involving the same task as the subject of
interest is not considered. In the case of a subject with much

fewer training samples, the performance of CSP and PCSP
are deteriorated.

In this paper we propose a Bayesian CSP model where we
exploit multi-subject EEG data to learn spatial patterns for a
target subject, encouraging information transfer between sub-
jects involving similar spatial patterns. To this end, we present
a Bayesian CSP with Pitman-Yor process (PYP) priors, re-
ferred to as BCSP-PYP, in which we develop a variational
inference algorithm to learn as well as to group spatial pat-
tern vectors, so that spatial pattern vectors in the same group
share the hyperparameters of their prior distributions. Cou-
pling similar spatial patterns in the same cluster by sharing
the hyperparameters encourages information transfer between
subjects involving similar spatial patterns, while information
transfer is discouraged between dissimilar subjects. BCSP-
PYP is an extension of our recent Bayesian CSP (BCSP) [3]
where we assign a single prior distribution to all spatial pat-
tern vectors, regardless of subjects. Our method is motivated
by task-clustering methods in the multi-task learning frame-
work [4,5], where similar tasks are identified and information
is transferred between tasks in the same group.

2. RELATED WORK

In this section we briefly review two probabilistic models for
CSP, i.e., probabilistic CSP (PCSP) [2] and Bayesian CSP
(BCSP) [3]. We denote by Xsc = [xsc1 , . . . ,x

sc
Tsc

] ∈ RD×Tsc

a collection of EEG signals measured atD electrodes over tri-
als (Tsc is the number of samples recorded for a pre-defined
number of trials) for subject s ∈ {1, . . . , S} who undergoes
the mental task involving class c ∈ {1, 2}. PCSP or BCSP
assumes that Xsc is generated by

Xsc = AsY sc +Esc, (1)

where As = [as1, . . . ,a
s
M ] ∈ RD×M is the basis matrix

for subject ’s’, containing M spatial pattern vectors shared
across classes, Y sc = [ysc1 , . . . ,y

sc
Tsc

] ∈ RM×Tsc the co-
efficient matrix (latent variables), Esc = [ϵsc1 , . . . , ϵ

sc
Tsc

] ∈
RD×Tsc is the noise matrix. It is assumed that each row of
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Fig. 1. Graphical representations of PCSP model [2] and
BCSP model [3].

Xsc is already centered (zero mean). Coefficients and noise
are assumed to be drawn from zero-mean Gaussian distribu-
tions:

ysct ∼ N (ysct |0, (Λsc)−1),

ϵsct ∼ N (ϵsct |0, (Ψsc)−1),

where Λsc ∈ RM×M and Ψsc ∈ RD×D are diagonal preci-
sion matrices for s = 1, . . . , S and c = 1, 2, whose diagonal
entries are given as {λsc1 , . . . , λscM} and {ψsc1 , . . . , ψscD }, re-
spectively. In the case of S = 1, the model (1) is equivalent
to the PCSP model, as shown in Fig. 1(a), where maximum
likelihood estimates of spatial pattern vectors As are learned
by the expectation maximization [2].

In the case where a sufficient number of training samples
is not available for some subjects, the performance of PCSP is
degraded. Bayesian multi-task learning enforces spatial pat-
ten vectors across subjects to share hyperparameters of their
prior distributions, allowing for learning from each other sub-
jects. In BCSP (see Fig. 1(b)) [3], Gaussian prior was placed
on the basis matrix As, sharing the hyperparameters (mean
vector and precision matrix) across subjects:

p(As) =
M∏
m=1

N (asm|µ,Ω−1),

for s = 1, . . . , S and the mean vector and the precision matrix
are assumed to follow Gaussian-Wishart distribution

p(µ,Ω) = N (µ|m0, (β0Ω)−1)W(Ω|W 0, ν0),

where W(Ω|W 0, ν0) denotes Wishart distribution parame-
terized by W 0 and ν0. Gamma distributions are assumed for
precision parameters Λsc and Ψsc,

p(Λsc) =

M∏
m=1

Gamma (λscm | aλ0 , bλ0 ),

p(Ψsc) =

D∏
d=1

Gamma (ψscd | aψ0 , b
ψ
0 ).
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Fig. 2. Graphical representation of Bayesian CSP with PYP
priors.

Posterior distributions over As and Y sc are approximately
computed by Bayesian variation inference method to calcu-
late CSP features [3].

3. BAYESIAN CSP WITH PYP PRIORS

In this section we present the main contribution of this pa-
per, which is Bayesian CSP with PYP priors, referred to as
BCSP-PYP. BCSP [3], as shown in Fig. 1(b), assumes that
all spatial pattern vectors {asm} share the hyperparameters,
without proximity between spatial patterns. This restriction
might bring negative effect such that information transfer is
enforced even between subjects whose spatial patterns are
very different. Motivated by the idea of task clustering in the
multi-task learning framework [4, 5], we incorporate a infi-
nite mixture model with PYP priors [6] into Bayesian CSP, as
shown in Fig. 2, so that grouping spatial pattern vectors asm
and learning the model (1) are performed simultaneously. In
this way, only spatial pattern vectors in the same cluster share
the hyperparameters.

The Pitman-Yor process (PYP) [7, 8] is a two-parameter
generalization of the Dirichlet process [9], which relaxes the
”rich-get-richer” property of the Dirichlet process by set-
ting an additional parameter. Invoking the linear model (1),
BCSP-PYP assumes that spatial pattern vectors {asm} are
drawn from the distributions p(asm|θsm) parameterized by
{θsm} that are independently drawn from a random measure
G from a PYP with a scaling parameter α and a discount
parameter γ and a base distribution G0:

G ∼ PYP(α, γ,G0), θsm ∼ G, asm ∼ p(asm|θsm), (2)

for m = 1, . . . ,M and s = 1, . . . , S. The process is defined
with α > −γ and 0 ≤ γ < 1. Spatial pattern vectors {asm}
generated by this model are partitioned according to the dis-
tinct values of the parameters {θsm}. Parameter θsm takes one
of distinct values in {θ∗k} (k = 1, . . . ,MS).

The stick-breaking representation [10] [7] of the random
measure G is given by

πk = vk

k−1∏
j=1

(1− vj), G =

∞∑
k=1

πkδθ∗k , (3)
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where vk and θ∗k are independent random variables drawn
from Beta distribution and the base measure G0, respectively

vk ∼ Beta(vk|1− γ, α+ kγ), θ∗k ∼ G0.

The stick-breaking representation (3) makes it clear that G is
an atomic random measure (with probability one), in which
mixing proportions {πk} are given by successively breaking
a unit-length stick into an infinite number of pieces. An inde-
pendent draw vk from a Beta(1 − γ, α + kγ) distribution is
re-scaled, proportional to the rest of stick, leading to the size
of the broken piece πk corresponding to the mixing propor-
tion.

We introduce cluster indicator vectors zsm ∈ RMS , the
k-th entry of which, denoted by zsm(k), equals 1 if θsm = θ∗k,
otherwise zero. In the BCSP-PYP model, θ∗k = (µ∗

k,Ω
∗
k), and

spatial pattern vectors are assumed to be drawn from Gaus-
sian distribution parameterized by the mean vector µ∗

k and
the precision matrix Ω∗

k. The base measure G0 is chosen as
Gaussian-Wishart distribution that is the conjugate prior for
Gaussian likelihood N (asm|µ∗

k, (Ω
∗
k)

−1). BCSP-PYP also
considers the same generative model (1) with the following
parameterization:

vk ∼ Beta(vk|1− γ, α+ kγ),

θ∗k = (µ∗
k,Ω

∗
k) ∼ N (µ∗

k|m0, (β0Ω
∗
k)

−1)W(Ω∗
k|W 0, ν0),

p(zsm(k) = 1) = vk

k−1∏
j=1

(1− vj),

asm|(zsm(k) = 1) ∼ N (asm|µ∗
k, (Ω

∗
k)

−1),

ysct ∼ N (ysct |0, (Λsc)−1),

xsct ∼ N (xsct |Asysct , (Ψ
sc)−1),

λscm ∼ Gamma(λscm |aλ0 , bλ0 ),
ψscd ∼ Gamma(ψscd |aψ0 , b

ψ
0 ).

We employ the variational inference method [11] to ap-
proximately compute the posterior distributions over spatial
pattern vectors as well as latent variables. As in variational
inference for DP mixture models [11], we also consider the
truncated stick breaking representation with the truncation
level K. The variational inference considers a lower-bound
on the marginal log-likelihood

log p({Xsc}) = log

∫
p({Xsc},Θ)dΘ

≥
∫
q(Θ) log

p({Xsc},Θ)

q(Θ)
dΘ ≡ F(q),

where the Jensen’s inequality was used and F(q) denotes the
variational lower-bound to be maximized. Θ denotes the set
of variables to be inferred, where the variational distribution
q(Θ) is factorized as

q(Θ) = q({As}) q({zsm}) q({Y sc}) q({vk})
q({Λsc}) q({Ψsc}) q({(µ∗

k,Ω
∗
k)}).

Optimal variational posterior distributions are computed by
alternatively maximizing the variational lower-bound F(q),
which is summarized in Table 1. The hyperparameters,
{α, γ, β0, ν0,W 0,m0, a

ψ
0 , b

ψ
0 , a

λ
0 , b

λ
0}, are also estimated

by maximizing the variational lower-bound F(q), which is
summarized in Table 2.

Given a test data Xs ∈ RD×T , we compute the CSP fea-
ture vector f ∈ R2n as follows. We first compute the poste-
rior mean matrices

{
Y
sc
}

for c = 1, 2,

Y
sc

= Σsc
⟨
As⊤

⟩
⟨Ψsc⟩Xs,

which corresponds to ηsct in Table 1 and ⟨·⟩ denotes the sta-
tistical expectation. Considering the class conditional proba-
bility as p(Xs ∈ c) = Tsc/(Ts1+Ts2) for c = 1, 2, we com-
pute Y

s
=
∑2
c=1 p(X

s ∈ c) · Y sc
. Treating columns in Y

s

as projected variables in CSP, we compute a M -dimensional
vector f̂

s
∈ RM , the m-th entry of which is calculated as

f̂s(m) = log

(
1

T

[
Y
s
Y
s⊤]

m,m
−
(
1

T

[
Y
s
1T

]
m

)2
)
,

where 1T ∈ RT is the vector of all ones. We select 2n entries
from

{
f̂s(m)

}
for m associated with top n and bottom n

expected precision ratio
{
⟨λs1m⟩/⟨λs2m⟩

}
, to construct the CSP

feature vector fs ∈ R2n.

4. NUMERICAL EXPERIMENTS

We compared the classification performances of the PCSP,
BCSP and BCSP-PYP on the BCI Competition IV1-2a data
set. The data set contains 9 subjects with 4 imagery move-
ments such that left/right hand, right foot, tongue, and we took
trials of left/right hand movement to consider binary classifi-
cation problem. Each imagery movement consists of 144 tri-
als. Every trial was divided into T = 500 times points, which
corresponds to the time interval from 3.5s to 5.5s after the vi-
sual cue (250 Hz). The data was recorded with 22 electrodes
(D = 22). Every trial was bandpass-filtered to emphasize
important frequency bands for the motor imagery task.

For all models, basis matrices are set to square matrix
(M = D) and feature vectors fs ∈ R2n (with n = chosen)
are constructed by PCSP, BCSP and BCSP-PYP. Linear dis-
criminant analysis (LDA) is applied to transform these feature
vectors down to scalar values which are fed into a minimum
distance classifier. The classification accuracy was obtained
by the ratio of the number of correctly classified test trials
compared to the total number of test trials. We selected half
of the trials in each subject as the test trials, and randomly
selected some of the remaining trials as the training trials. At
each experiment, a subject s in the dataset is chosen as the

1http://www.bbci.de/competition/iv/
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Table 1. Variational posteriors and corresponding updating equations in BCSP-PYP are summarized. Denote by ⟨·⟩ the statis-
tical expectation with respect to corresponding variational posterior distributions. The (i, j)-element of a matrix is denoted by
[·]i,j , and [·]i,: represents the i-th row of a matrix. The trace operator is denoted by tr(·), and diag(x) represents the diagonal
matrix whose diagonal entries are given by the vector x. Multinomial(x|p) represents the multinomial distribution such that
p(xk = 1) = pk.

Variational posterior distributions Updating equations for variational parameters

q(As) =
∏D
d=1 N ([As]d,:|ν̄sd,Φ

s
d)

(Φs
d)

−1
=
∑K
k=1 ⟨[Ω

∗
k]d,d⟩ diag

(⟨
z̄sk:
⟩)

+
∑2
c=1 ⟨ψscd ⟩

⟨
Y scY sc⊤

⟩
,

ν̄sd =
{∑2

c=1⟨ψscd ⟩ [Xsc]d,:

⟨
Y sc⊤

⟩
+
∑K
k=1

(
⟨[Ω∗

k]d,:µk⟩
⟨
z̄sk:
⟩

− diag
(⟨
z̄sk:
⟩)∑

j ̸=d⟨[Ω
∗
k]d,j⟩⟨[A

s]j,:⟩⊤
)}

Φs
d,

z̄sk: = [zs1(k) . . . z
s
M (k)]

⊤.

q(zsm) = Multinomial(zsm|rsm)

rsm(k) ∝ exp
{

1
2 ⟨log |Ω

∗
k|⟩ − 1

2

∑D
d=1⟨[Ω

∗
k]d,d⟩

⟨
([As]d,m)2

⟩
− 1

2

∑
i̸=j ⟨[A

s]i,m⟩ ⟨[Ω∗
k]i,j⟩⟨[A

s]j,m⟩+
⟨
as⊤m

⟩
⟨Ω∗

kµ
∗
k⟩

−1
2

⟨
µ⊤
k Ω

∗
kµ

∗
k

⟩
+ ⟨log vk⟩+

∑k−1
j=1 ⟨log(1− vj)⟩

}
.

q(Y sc) =
∏Tsc
t=1 N (ysct |ηsct ,Σ

sc)
(Σsc)

−1
= ⟨Λsc⟩+

∑D
d=1⟨ψscd ⟩

⟨
[As]⊤d,:[A

s]d,:

⟩
,

ηsct = Σsc
⟨
As⊤

⟩
⟨Ψsc⟩xsct .

q(vk) = Beta(vk|avk, bvk) avk = 1− γ + ⟨Lk⟩, bvk = α+ kγ +
∑S
s=1

∑M
m=1

∑K
j=k+1⟨zsm(j)⟩.

q (Λsc) =
∏M
m=1 Gamma(λscm|aλscm , bλscm ) aλscm = aλ0 + Tsc

2 , bλscm = bλ0 + 1
2

[⟨
Y scY sc⊤

⟩]
m,m

.

q(Ψsc) =
∏D
d=1 Gamma(ψscd |aψscd , bψscd )

aψscd = aψ0 + Tsc
2 ,

bψscd = bψ0 + 1
2

[
XscXsc⊤ − 2Xsc⟨Y sc⊤⟩⟨As⊤⟩+

⟨
AsY scY sc⊤As⊤

⟩]
d,d

q(µ∗
k,Ω

∗
k) = N

(
µ∗
k|mk, (βkΩ

∗
k)

−1
)

· W (Ω∗
k|W k, νk)

βk = β0 + ⟨Lk⟩,
νk = ν0 + ⟨Lk⟩,
mk = 1

βk
(β0m0 + ⟨Lk⟩âk),

(W k)
−1 = (W 0)

−1 + ⟨Lk⟩Ŷ k +
β0⟨Lk⟩
βk

(m0 − âk)(m0 − âk)
⊤,

âk = 1
⟨Lk⟩

∑S
s=1

∑M
m=1⟨zsm(k)⟩⟨asm⟩,

Ŷ k = 1
⟨Lk⟩

∑S
s=1

∑M
m=1⟨zsm(k)⟩⟨asmas⊤m ⟩ − âkâ

⊤
k .

Table 2. Updating equations for hyperparameters {α, γ, β0, ν0,W 0,m0, a
ψ
0 , b

ψ
0 , a

λ
0 , b

λ
0} are summarized: (a) stationary point

equations for {α, γ, aψ0 , aλ0 , ν0}, which do not have closed-form solutions, are numerically solved to update corresponding
hyperparameters; (b) updating equations for {β0,W 0,m0, b

ψ
0 , b

λ
0}.

(a)

f(α) =
∑K−1
k=1

{
ψ(α+ (k − 1)γ)− ψ(α+ kγ) + ⟨log(1− vk)⟩

}
= 0,

f(γ) =
∑K−1
k=1

{
(k − 1)ψ(α+ 1 + (k − 1)γ) + ψ(1− γ)− kψ(α+ kγ)

}
= 0,

f(aψ0 ) = log(aψ0 )− ψ(aψ0 ) +
1

2SD

∑S
s=1

∑2
c=1

∑D
d=1⟨logψscd ⟩ − log

(
1

2SD

∑S
s=1

∑2
c=1

∑D
d=1⟨ψscd ⟩

)
= 0,

f(aλ0 ) = log(aλ0 )− ψ(aλ0 ) +
1

2SM

∑S
s=1

∑2
c=1

∑M
m=1⟨log λscm⟩ − log

(
1

2SD

∑S
s=1

∑2
c=1

∑M
m=1⟨λscm⟩

)
= 0,

f(ν0) = D log ν0 −
∑D
i=1 ψ

(
ν0+1−i

2

)
− log

∣∣∣∑K
k=1⟨Ω

∗
k⟩
∣∣∣+ 1

K

∑K
k=1 ⟨log |Ω

∗
k|⟩+D(logK − log 2) = 0.

(b)
β0 = KD∑K

k=1⟨(m0−µ∗
k)

⊤Ω∗
K(m0−µ∗

k)⟩
, m0 =

(∑K
k=1⟨Ω

∗
k⟩
)−1 (∑K

k=1⟨Ω
∗
kµ

∗
k⟩
)
,

W 0 = 1
ν0K

∑K
k=1⟨Ω

∗
k⟩, bψ0 =

aψ0 ·2SD∑S
s=1

∑2
c=1

∑D
d=1⟨ψscd ⟩ , bλ0 =

aλ0 ·2SM∑S
s=1

∑2
c=1

∑M
m=1⟨λscm⟩ ,
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Fig. 3. Averaged classification accuracy for target subjects is shown when the number of training samples for non-target
subjects, denoted by na, varies. Three different plots are shown for nt = 1, 24, 60, where nt denotes the number of training
samples for target subject for each class.

target subject. We randomly selected nt trials from each class
of the target subject as the training trials (Tsc = T · nt). We
randomly selected na trials from each class of the non-target
subjects (Tic = T · na, i ̸= s) as the additional training tri-
als. The classification accuracy was evaluated using the test
trials of the target subjects only. We repeated the experiments
10 times for s = 1, ..., S, and averaged the accuracies to rep-
resent the classification performance of models on the given
(nt, na) setting. Note that PCSP cannot exploit the additional
training trials so that the classification performance of which
does not vary by na.

As shown in Fig. 3, the performance of BCSP-PYP is bet-
ter than PCSP and BCSP, in terms of classification accuracy
when features computed by these methods are used. These
results demonstrate that our proposed method BCSP-PYP is
quite effective in exploiting non-target subjects’ data, as com-
pared to BCSP.

5. CONCLUSIONS

We have presented a Bayesian CSP model with PYP priors
to tackle multi-subject EEG classification, where the infinite
mixture model partitions the spatial pattern vectors into sev-
eral groups and at the same time spatial pattern vectors are
learned in Bayesian framework. Spatial patter vectors in the
same group are coupled through sharing the hyperparame-
ters of their prior distributions, such that information transfer
between subjects involving similar spatial patterns is encour-
aged while information transfer between dissimilar subjects is
discouraged. Numerical experiments on BCI competition IV
2a dataset confirmed the useful behavior of our BCSP-PYP,
compared to existing probabilistic models such as PCSP and
BCSP.
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