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ABSTRACT

Fusion is widely used to improve the overall detection per-
formance in applications such as radar, wireless sensor net-
works, wireless communications, spectrum sensing and so
on. While the optimum fusion strategy for any preset local
decision performance can be easily obtained by the Neyman-
Pearson lemma, the selection of the local detection strategy
that optimizes the global performance is intractable due to its
complexity and the limited global information at local detec-
tors. In this paper, we use large deviation analysis to deter-
mine a local decision rule to optimize the asymptotic global
performance. Some interesting properties of the decision rule
are observed. Numerical results show that our proposed strat-
egy approximates the optimal performance very well even
with a small number of local detectors.

Index Terms— sensor fusion, optimal local detection
strategy, large deviation analysis, asymptotic performance,
global performance.

1. INTRODUCTION

Signal detection is a common problem in applications includ-
ing radar, wireless sensor networks, wireless communication
systems, cognitive radio spectrum sensing, and so on. To en-
hance performance, a fusion center collects information from
multiple local detectors and makes a global decision. Due to
the bandwidth constraint, the local detectors often make de-
cisions first and transmit the one bit decisions to the fusion
center. Accordingly, the entire process is called detection fu-
sion or decision fusion [1].

In the pioneering work of Tsitsiklis on this problem [2],
it has been shown that while the fusion strategy can be easily
obtained by the Neyman-Pearson (NP) lemma, the selection
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of a local decision rule to optimize the global performance
is mathematically intractable. In the current literature, some
work fixes the fusion rule and then obtains the optimal local
decision rule [3]; whereas others compare the fusion detec-
tion performance for various local decision rules, including
the locally optimal minimized average error probability [4],
the maximum decision output entropy [5] and the largest di-
vergence between the statistical distribution under different
hypotheses [6, 7]. None of these detectors is optimum.

Recently, some asymptotic analyses for detection fusion
have been reported in literature. For example, [8] develops a
fusion rule for channel distorted decisions using a Chernoff
exponent bound analysis. Similar analysis is followed in [9]
to obtain an asymptotically optimum fusion rule for an M -
hypothesis testing problem, and in [10] for non-centralized
distributed fusion. However, these papers focus only on de-
signing the fusion rule, while the optimum local decision
strategy remains an open problem. In this paper, our goal is
to find an optimal local decision strategy that optimizes the
asymptotic global performance.

We will deal with a parallel fusion structure [11] and work
with a binary hypothesis testing problem. By large deviation
analysis, we will optimize the local thresholds to obtain the
best global performance, asymptotically in the number of lo-
cal detectors. Compared with existing work in the literature,
our method has a lower complexity and guarantees the global
optimal performance, asymptotically. Some interesting prop-
erties of the optimal strategy will also be discussed. Then,
with a specific example of cooperative energy sensing, we
will demonstrate the optimality of our proposed algorithm.

This paper is organized as follows: we first present the
general signal model for detection fusion in Section 2 and for-
mulate the joint optimization problem in Section 3. Then, we
will present the error exponent expressions in Section 4 and
develop the asymptotically optimized local detection strategy
accordingly in Section 4. Finally, we present a case study
to compare performance under various local decision strate-
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Fig. 1. System diagram for detection fusion.

gies in Section 6 and give concluding remarks in Section 7.
Throughout the paper, X ∼ CN (µ, σ2) denotes a random
variable X following a proper complex Gaussian distribution
with mean µ and variance σ2; d ∼ Ber(p) denotes a Bernoulli
random variable; X ∼ Bin(N, p1) denotes a random variable
X following a binomial distribution; f(x) ∼ g(x) means that

lim
x→+∞

f(x)

g(x)
= c where c is a constant.

2. SYSTEM MODEL

The diagram for a detection fusion system is shown in Fig.
1. As depicted in this figure, there is a common random
signal source which follows either distribution f0 under hy-
pothesis H0, or distribution f1 under hypothesis H1, where
P (H0 true) = π0 and P (H1 is true) = π1 are the a priori
probabilities of the hypotheses. Each local detector will make
its own local decision di ∈ {0, 1} based on its own observed
signal si. Then, a fusion center will collect all local decisions
dis and make a global decision d ∈ {0, 1} accordingly.

It has been shown that in the case that the signals at local
decisions are dependent, the solution for optimal detection fu-
sion is non-deterministic polynomial-time hard [12]. There-
fore, in our analysis, we assume that the signals at different
detectors are independent, which is true in many real appli-
cations. Then, in [2], it is proved that to obtain asymptoti-
cally optimal performance, all local detectors should follow
the same decision rule. Under this strategy, the dis are inde-
pendently identically distributed.

To describe the distributions of the dis at the fusion cen-
ter, we denote Pf,l = P (di = 1|H0) as the local false alarm
probability and Pd,l = P (di = 1|H1) as the local detection
probability. Then, (Pf,l, Pd,l) ∈ [0, 1] × [0, 1] is called the
receiver operating characteristic (ROC) curve. The local de-
cision di follows a Bernoulli distribution with Pf,l and Pd,l
under hypothesis H0 and H1, respectively. At the fusion cen-
ter:

P (d1, d2, . . . , dN |H0) = P
∑N
i=1 di

f,l (1− Pf,l)N−
∑N
i=1 di ,

P (d1, d2, . . . , dN |H1) = P
∑N
i=1 di

d,l (1− Pd,l)N−
∑N
i=1 di .

(1)

Accordingly, ds =
N∑
i=1

di is the sufficient statistics and it fol-

lows a binomial distribution under each hypothesis.

3. OPTIMUM LOCAL AND FUSION DECISIONS

In this paper, we adopt the global average error probability
as the performance metric, i.e., Pe = π0P (d = 1|H0) +
π1P (d = 0|H1). To obtain the best performance, we want
to find a local threshold and a corresponding fusion rule that
minimizes Pe.

The Bayesian detector will minimize Pe by implementing
the likelihood ratio test [13]

π1P
ds
d,l(1− Pd,l)N−ds

π0P
ds
f,l(1− Pf,l)N−ds

H1

R
H0

1 , (2)

and the corresponding minimized Pe can be calculated. No-
tice that as long as (Pf,l, Pd,l) is known to the fusion center,
the optimal fusion rule can be easily obtained according to
Eq. (2).

From Eq. (2), it is easy to verify that for any given lo-
cal false alarm probability Pf,l, the larger the local detection
probability Pd,l is, the smaller the global average error prob-
ability Pe will be. Therefore, at local detectors, the NP de-
tector or equivalently the maximum likelihood (ML) detector
[13] should be adopted to achieve the best performance:

f1(si)

f0(si)

H1

R
H0

L . (3)

However, this will only give an ROC curve (Pf,l, Pd,l)
for the local detectors. How to select the optimal point
(P of,l, P

o
d,l) on the ROC of the NP detector according to

Eqs. (2) and (3) is usually a non-convex and mathematically
intractable problem. In addition, the optimization process in-
volves the number of local detectors N , which is not always
available to local detectors.

In this paper, we will use large deviation analysis to obtain
the optimal local decision strategy, i.e. (P of,l, P

o
d,l) to mini-

mize the global average error probability Pe, asymptotically
in N .

4. ERROR EXPONENT EXPRESSIONS

As introduced in Section 2, the sufficient statistic at the fusion
center ds =

∑N
i=1 di follows a binomial distribution:

H0 : ds ∼ Bin(N,Pf,l) ,
H1 : ds ∼ Bin(N,Pd,l) .

(4)

Let the fusion threshold be Pf,lN < ηf = θFN <
Pd,lN . Then by large deviation analysis, the global error
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probabilities are asymptotically [14]:

Pf = P (ds ≥ θFN |H0) ∼ e−NE0 ,

Pmd = P (ds < θFN |H1) ∼ e−NE1 ,
(5)

where

E0 = θF log
θF
Pf,l

+ (1− θF ) log
1− θF
1− Pf,l

= DKL(θF ||Pf,l) ,

E1 = θF log
θF
Pd,l

+ (1− θF ) log
1− θF
1− Pd,l

= DKL(θF ||Pd,l) ,

(6)
and DKL(·) denotes the Kullback-Leibler divergence [15].
Accordingly, the overall probability of error is given by:

Pe=π0Pf+π1Pmd∼π0e−NE0+π1e
−NE1∼e−N min(E0,E1)

(7)

5. ASYMPTOTICALLY OPTIMAL LOCAL
DECISION

To minimize this global average error probability asymptoti-
cally, we need to maximize min(E0, E1). Hence, the problem
becomes:

max
Pf,l,Pd,l,θF

min(E0, E1) (8)

It should be noticed that when Pf,l < θF < Pd,l, E0(θF )
is an increasing function of θF and E1(θF ) is a decreas-
ing function of θF . As a result, the maximum value of
min(E0(θF ), E1(θF )) is achieved when E0(θF ) = E1(θF ).
According to Eq. (6),

θoF =
log

1−Pd,l
1−Pf,l

log
Pf,l
Pd,l

+ log
1−Pd,l
1−Pf,l

. (9)

According to Eqs. (8) and (9), the optimal local decision
rule can be obtained as follows:

(P of,l, P
o
d,l) = arg max

(Pf,l,Pd,l)
DKL(θ

o
F ||Pf,l) , (10)

where θof is parameterized by (Pf,l, Pd,l) according to Eq.
(9).

Recall that for local detectors, we already have an NP de-
tector ROC curve which can represent Pd,l as a function of
Pf,l. So, Eq. (10) can be interpreted as a search over the
ROC curve to find a point which leads to the maximum error
exponent. Although (Pf,l, Pd,l) is two-dimensional, it only
has a one-dimensional degree of freedom, namely the local
threshold. This renders the optimization a one dimensional
problem. In fact, under many signal models, the NP local
detectors are in the form of a scalar sufficient statistic com-
pared to a single threshold and in this case Pf,l and Pd,l can
often be represented by this threshold analytically in closed
form. Therefore, the global average error exponent can be
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Fig. 2. The performance surface under local and fusion thresholds
with N = 20.

rewritten as a single-variable function. The objective function
DKL(θ

o
F ||Pf,l) is uni-modal in many scenarios and hence can

be easily optimized by line search techniques such as those in
[16, Chapter 7].

Note that although Eq. (9) gives an asymptotically op-
timal fusion threshold, the fusion center always uses an NP
detector according to Eq. (2) to obtain the best fusion perfor-
mance.

Remarks:

1. Asymptotically, the optimal local decision strategy is
independent of the total number of sensors N , but only
dependent on the signal model si under the original hy-
potheses. This enables the global optimization even
when the local distributed detectors do not know the
network size N . In fact, if the sensors have sufficient
computing resources, the local thresholds could be pe-
riodically recomputed locally if the distribution of si
changes over time.

2. Asymptotically, the optimal local decision strategy is
independent of the a priori probabilities. This is due
to the fact that when N approaches infinity, the π0 and
π1 terms in Eq. (2) will contribute very little to the
likelihood ratio.

6. EXAMPLE: ENERGY SENSING

To illustrate our solution for the asymptotically optimum de-
tection fusion, we adopt the specific signal model for a coop-
erative energy sensing problem as an example and show the
performance comparisons.
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Fig. 3. Error exponent under different local thresholds. From
bottom to top, the per sensor SNR is γ = 0, 5, 10, 15, 20 dB.

6.1. Signal Model

In the energy sensing problem, the task is to determine
whether there is a signal transmitted over a certain chan-
nel (H1) or not (H0). Under Rayleigh fading and additive
white Gaussian noise, the normalized signal model for local
detectors is [4]:

si|H0 = n ∼ CN (0, 1)

si|H1 = hx+ n ∼ CN (0, γ + 1)
(11)

where n is white Gaussian noise, h is a Rayleigh fading chan-
nel, x is the transmitted signal and γ is the average signal to
noise ratio (SNR). Under this signal model, the NP detector
is the energy detector:

‖si‖2
H1

R
H0

η . (12)

Correspondingly, the local false alarm and detection probabil-
ities are

Pf,l = e−η ,

Pd,l = e−
η
γ+1 .

(13)

6.2. Numerical Results

To gain a better understanding of the detection fusion opti-
mization problem, we first plot in Fig. 2 the performance
(Pe) surface vs. the local and fusion thresholds. In this fig-
ure, the number of local detectors is N = 20. Evidently,
there are 4 local minima. This verifies our discussions of the
non-convexity in Section 3. In addition, the number of local
minima will increase with N .
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Fig. 4. Local decision thresholds under joint optimization by
exhaustive search and large deviation analysis. From bottom
to top, the per sensor SNR is γ = 0, 10, 20 dB.

For large deviation analysis, we plot the error exponent
under different local decision thresholds in Fig. 3. In this
figure, it can be observed that with the energy sensing signal
model, the error exponent is a uni-modal function of the local
threshold. Therefore, the optimal local threshold can be easily
found using a one-dimensional line search algorithm.

The local thresholds for joint optimization by exhaustive
search, and the thresholds by large deviation analysis for sev-
eral different per sensor SNR values are plotted vs. N in Fig.
4. It can be verified that as the number of local detectors
increases, the local thresholds obtained by the joint optimiza-
tion will converge to the threshold given in our large deviation
analysis.

In Fig. 5, we compare the performance of the large devi-
ation solution with existing ones, including the local average
error probability minimization min(Pf,l + 1 − Pd,l) [4], the
decision output entropy maximization [5] with Pf,l = Pd,l (or
equivalently the balanced detector [13]) and the mutual infor-
mation maximization between decision and hypothesis with
max(I(H, di)) [7]. We also present the performance limit by
optimizing the local thresholds via exhaustive search. Note
that in all cases, the fusion threshold is obtained accordingly
to Eq. (2). In Fig. 5, we plot the global average error prob-
ability at per sensor SNR γ = 15 dB as a function of the
number of local detectors N . It can be observed that the av-
erage error probability does decay exponentially with N as
the large deviation analysis indicates. In addition, our pro-
posed method approaches the optimized detection fusion by
exhaustive search very well and actually does not require N
to be very large to approach the optimal performance.
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Fig. 5. Global average error probability under different local
decision criteria at per detector SNR γ = 15 dB as a function
of the number of local detectors N .

7. CONCLUSIONS

In this paper, large deviation analysis is used to derive the
asymptotically optimal local detection strategy for detection
fusion. Asymptotically, the joint optimization problem was
simplified to a simple line search on an ROC curve. It was
observed that the asymptotically optimal local decision rule
is independent of the number of local detectors N and the a
priori probabilities of the hypotheses. A cooperative energy
sensing problem was considered to demonstrate our proposed
approach. Numerical results verify that our proposed method
approaches the optimal local detection strategy obtained by
exhaustive search and has demonstrated better performance
than all other reported local decision alternatives at small to
moderate N values, with no additional information required
at the local detectors.
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