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ABSTRACT

Consider the problem of tracking multiple acoustic sources
in three dimensional (3-D) space using a distributed acoustic
vector sensor (AVS) array. Traditionally, indirect approaches
are widely used, by which the direction of arrival (DOA) of
the source at each sensor is estimated first, and the DOA es-
timates are then employed to intersect a 3-D position. The
performance of position estimation can be seriously degraded
by inaccurate DOA estimates at the first stage, and multiple
source localization is impossible unless the DOA estimates
can be associated to each source accurately. In this paper, a
particle filtering (PF) approach is developed to directly fuse
the signals collected from distributed sensors and track the 3-
D positions. To enhance the tracking performance and keep
the computational complexity affordable, an extended infor-
mation filter is developed to achieve the optimal resampling.
The simulations show that the proposed tracking approach
significantly outperforms the indirect localization approaches
and is able to track multiple active sources accurately.

Index Terms— Acoustic vector sensor, distributed sensor
array, Information filter, particle filtering.

1. INTRODUCTION

Acoustic vector sensor (AVS) employs a co-located sensor
structure and measures acoustic pressure as well as particle
velocity at sensor position [1]. The manifold of an AVS con-
tains both the azimuth and elevation information and enables
2-D DOA estimation. Also the manifold is independent of
the source signal frequency, which makes AVS suitable for
scenarios where the source signal frequency is wideband or
unknown in a priori. Due to these merits, both the theoret-
ical aspects and the applications of AVS have been widely
studied [1–4]. A full description of AVS in signal processing
problems can be found in [1]. Traditional DOA estimation
approaches such as Capon beamforming and subspace based
approaches using AVSs have been investigated in [2,3]. How-
ever, such investigations focus only on the DOA estimation,
rather than the 3-D (x−, y−, z−) position estimation.

Recently, advances of distributed sensor arrays in provid-

ing unprecedented capabilities for target detection and local-
ization have motivated the deployment of distributed sensor
arrays for acoustic source detection and localization [4, 5]. In
[4], indirect approaches have been developed for 3-D source
position estimation. At each AVS, Capon beamforming is em-
ployed to estimate the DOA of the source. These DOA esti-
mates are then employed to triangulate a 3-D location by us-
ing least square based methods. Such approaches assume that
the source is static and relatively a large number of snapshots
is required to obtain good DOA estimates. Also it can be ap-
plied only for single source problem. For multiple sources, a
data association method should be employed to associate the
DOA estimates with each source.

In this paper, we consider multiple source tracking using
a distributed AVS array. A particle filtering (PF) approach is
formulated to directly fuse the signals received from all sen-
sors. There is no need to preprocess the data to extract the
DOA estimates. Hence, the proposed approach can be re-
ferred as a direct method. The source motion is modeled by
using a constant velocity (CV) model. The likelihood of each
particle is constructed by taking the product of the likelihood
across all AVSs. To enhance the tracking accuracy and also
make the computational complexity affordable, an extended
information filter (EIF) is introduced to achieve the optimum
importance sampling. The advantages of the proposed ap-
proach is that it is able to track dynamic sources and partic-
ularly, it can be applied to track multiple wideband acoustic
sources. It is worth mentioning that this work can be regarded
as an extension of the authors’ previous investigation in single
AVS based source tracking [6, 7].

The rest of this paper is organized as follows. In Section
2, signal model is introduced. Section 3 presents the tracking
algorithm developed for acoustic source tracking using dis-
tributed AVS array. Simulated experiments are organized in
Section 4 and conclusions are drawn in Section 5.

2. SIGNAL MODEL AND INDIRECT METHOD

Assume that multiple wideband acoustic source signals
sm(t), for m = 1, . . . ,M impinge on an array equipped
with N spatially distributed AVSs at discrete time t. The
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2-D DOA of the mth source relative to the nth sensor
(n = 1, . . . , N ) can be written as θm

n (t) = [φmn (t), ψm
n (t)]T

where φmn (t) ∈ (−π, π] and ψm
n (t) ∈ [−π/2, π/2] represent

the azimuth and elevation angles respectively, and superscript
T denotes the transpose. AVS measures acoustic pressure as
well as three component particle velocities. Let um

n (t) be the
unit direction vector pointing from the sensor toward to the
source and given as

um
n (t) =





cosψm
n (t) cosφmn (t)

cosψm
n (t) sinφmn (t)
sinψm

n (t)



 . (1)

The received signal at the nth AVS can be modeled as [1]

yn(t) =
M
∑

m=1

a(θm
n (t))sm(t) + εn(t), (2)

where a(θm
n (t)) =

[

1, (um
n (t))T

]T
∈ C4×1 is the steering

vector, and εn(t) ∈ C4×1 represent the channel noise in-
cluding the pressure and velocity noise terms. Note that we
have normalized the particle velocity terms by multiplying a
constant term −ρ0c0, where ρ0 and c0 represent the ambi-
ent density and the propagation speed of the acoustic wave in
the medium respectively. For the noise process in (2), it is
further assumed that εn(t) is a sequence of complex-valued
independent and identically distributed (i.i.d.) circular Gaus-
sian random variables with zero mean and covariance matrix
Γ, given as εn(t) ∼ CN (0,Γ). The distances between the
source and the sensors are assumed to be much larger than the
maximum wavelength of acoustic signal. Each source signal
has an i.i.d. random amplitude ε(t) and random phase ζ(t),
i.e., s(t) = ε(t)ejζ(t). This means that s(t) is a wide-band
signal and is uncorrelated from one snapshot to the next.

Assume that T0 snapshots are considered at each time step
k. When T0 is small, the source can be assumed station-
ary and θm

n (k) is used to replace θm
n (t) in the measurement

frame. Equation (2) can be written as

Yn(k) = A(θn(k))S(k) + εn(k), (3)

where A(θn(k)) = [a(θ1
n(k)), . . . , a(θ

M
n (k))] and S(k) =

[s1(k), . . . , sM (k)]T . Capon beamforming response is [2]

Pn
k (θ) =

{

AH(θ)(Rn
k )

−1A(θ)
}−1

, (4)

whereRn
k is the covariance matrix given as

Rn
k = E{Yn(k)Yn(k)

H} ≈
1

T0
Yn(k)Yn(k)

H , (5)

where E is the expectation operation, and the superscript
H denotes the conjugate transpose. The DOA estimation
can easily be obtained by implementing a 2-D search over θ
which can maximize the output of Capon beamformer

θ̂k = arg max
θ∈(−π π]×[−π/2 π/2]

|Pk(θ)| , (6)

where | · | denotes the amplitude of a complex value. In [4],
indirect approaches have been developed for 3-D localiza-
tion. The DOA measurements at each AVS is estimated first
by using (6). The DOAs are then regarded as measurements
and employed to triangulate the 3-D source position by us-
ing weighted least-square (WL) and re-weighted WL (RWL)
approaches. However, such approaches can be used only for
single source localization and are easily to be violated by the
inaccurate DOA estimates.

In fact, the 3-D source position in Cartesian coordinates
are directly related to the received signal. Assume that the
nth AVS is deployed at arbitrary locationsx0

n = [x0
n, y

0
n, z

0
n]

T

and the m source is located at xm,k = [xm,k, ym,k, zm,k]T .
According to the array geometry, the 2-D DOA θm

n (k) is re-
lated to the source position by

φmn (k) = tan−1

(

xm,k − x0
n

ym,k − y0n

)

;

ψm
n (k) = tan−1

(

zm,k − z0n
√

(xm,k − x0
n)

2 + (ym,k − y0n)
2

)

; (7)

Submitting (7) into (2), the relationship between the source
position and the received signal can be formulated as

Yn(k) = An(Xk)S(k) + εn(k), (8)

whereAn(Xk) = [an(x1,k), . . . , an(xm,k)] and an(xm,k) =
a(θm

n (k)). Equation (8) shows a direct relationship between
the measurements and the 3-D positions. In the next section,
a particle filtering approach will be developed to estimate the
3-D position of the source directly from the signals collected
from all sensors, i.e.,Yk = [Y1(k), . . . ,YN (k)]T .

3. PARTICLE FILTERING FOR DISTRIBUTED AVS
ARRAY BASED SOURCE TRACKING

Assume that a measurement sequenceY1:k = {Y1, . . . ,Yk}
until time step k has been obtained. The state to be estimated
can be written into a vectorXk (e.g.,Xk = [xT

1,k, . . . ,x
T
M,k]

T ).
The posterior distribution of the state p(Xk|Y1:k) can be ob-
tained via a Bayesian recursive estimation, given as

p(Xk|Y1:k−1) =

∫

p(Xk|Yk−1)p(Xk−1|Y1:k−1)dXk−1;

p(Xk|Y1:k) ∝ p(Yk|Xk)p(Xk|Y1:k−1). (9)

where p(Xk−1|Y1:k−1) is the posterior distribution at the last
time step, and p(Xk|Y1:k−1) is the prior distribution for the
current time step. Since the measurement function is nonlin-
ear, the PF [8] that provides an excellent solution to the non-
linear problem is employed. The core idea of PF is that it uses
a set of particles and importance weights of these particles
to approximate the posterior distribution. Assuming that L
particles {X(#)

k , w(#)
k }L#=1 are used to approximate the above
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Bayesian recursion. The whole procedure of PF processing
can be summarized as following. At time step k, the particles
are sampled according to an importance function, given as

X
(#)
k ∼ q(X(#)

k |X(#)
k−1,Y1:k). (10)

The importance weights of the particles are then evaluated by

w(#)
k = w(#)

k−1

p(Yk|x
(#)
k )p(X(#)

k |X(#)
k−1)

q(X(#)
k |X(#)

k−1,Y1:k)
, (11)

After resampling, the posterior distribution of the state is ap-
proximated by p(Xk|Y1:k) ≈

∑L
#=1 w̃

(#)
k δ

X
(!)
k

(Xk), where

δ(·) is a Dirac-delta function, and w̃(#)
k is a normalizedweight.

Source dynamics. Assume that the mth source moves
with a velocity ẋm,k = [ẋm,k, ẏm,k, żm,k]T . The source state
xm,k can be constructed by cascading the position and ve-
locity parts, i.e., xm,k = [xT

m,k, ẋ
T
m,k]

T . CV model [9] is
employed here to model the source dynamics, given as

X
(#)
k = FX

(#)
k−1 +Gvk, (12)

where v(k) is a zero-mean real Gaussian process (i.e., v(k) ∼
N (0,Σv). The coefficients F andG are defined as

F = IM ⊗

[

I3 ∆T I3
0 I3

]

;G = IM ⊗

[

∆T 2

2 I3
∆T I3

]

, (13)

where ∆T represents the time period between the previous
and current time step, and ⊗ denotes the Kronecker prod-
uct. The source state transition density p(X(#)

k |X(#)
k−1) is de-

termined by the source dynamic model (12).
Optimum importance sampling. Generally, prior impor-

tance function is widely employed in PF due to its simplicity.
However, the position estimates suffer from large variances.
The variance can be minimized by sampling from an opti-
mum importance function, i.e., X(#)

k ∼ p(X(#)
k |X(#)

k−1,Yk).
In this paper, an extended information filter (EIF) is intro-
duced to achieve the optimum resampling. To formulate the
EIF, the measurement function (8) needs to be linearized first.
Applying the first-order Taylor expansion, the measurement
function becomes

Yn(k) ≈ H
n,(#)
k X

(#)
k + ε̄n(k), (14)

where ε̄n(k) ∼ CN (0,Pn
k ) is the noise term which includes

the measurement noise process as well as the higher order
expansion error and Pn

k is the covariance matrix. H
(#)
k is the

coefficient matrix of the first-order Taylor expansion given as
H

n,(#)
k = ∂An(X

(#)
k )S(k)/∂X(#)

k at X(#)
k = X̂

(#)
k−1. EIF can

thus be formulated based on the state space model (12) and
(14). Assume that the inverse matrix of the state variance is
defined as Ik = (Qk)−1. The information filter is given by
the following equations [10].

In,(#)
k|k−1 =(Qn

k−1)
−1 − (Qn

k−1)
−1

(In,(#)
k−1 + (Qn

k−1)
−1)−1(Qn

k−1)
−1; (15)

In,(#)
k =In,(#)

k|k−1 + (Hn,(#)
k )H(Pn

k )
−1H

n,(#)
k (16)

Kn,(#)
k =(In

k )
−1(Hn,(#)

k )H(Pn
k )

−1 (17)

X̂
(#)
k =X̄

(#)
k +Kn,(#)

k (Yn(k)−H
n,(#)
k X̄

(#)
k ) (18)

whereQn
k is the covariancematrix for source dynamics. Usu-

ally Qn
k and Pn

k are assumed to be a constant, i.e., Qn
k = Q

and Pn
k = P. Therefore the inverse of Qn

k and Pn
k can be

calculated once at the beginning of the algorithm, not at each
iteration. The matrix to be inverted is thus only the informa-
tion matrix In,(#)

k , which is of a size 6M × 6M . Hence, the
computation complexity for the inverse operation of EIF is
significantly lower than that of EKF (in EKF, the matrix to
be inverted is often with a size of the square of measurement
size, i.e., 4T0 × 4T0). After each EIF implementation, the
PDF of particles is a Gaussian distribution with mean X̂

(#)
k

and covariance matrix (In,(#)
k )−1, given as

p(X(#)
k |X(#)

k−1,Yn(k)) = N (X(#)
k ; X̂(#)

k , (In
k )

−1). (19)

Hence, the optimum importance function at each time step is
q(·) = p(X(#)

k |X(#)
k−1,YN (k)).

Concentrated likelihood (CL). Since the measurement
noise process is assumed to be Gaussian, the likelihood func-
tion at each individual AVS can be written as

L(Yn(k)|X
(#)
k ) =(π−4T ) det (πΓk)

−T0

exp

{

− T0tr
(

Γ−1
k Rn

k

)

}

, (20)

where det(·) and tr(·) represent the determinant and trace op-
eration respectively. The statistics of source signal and noise
process are unknown in practice. CL function is thus em-
ployed, by which these parameters are estimated based on a
maximum likelihood estimator. CL function is given by [1]

p(Yn(k)|X
(#)
k ) =(π−4T0 ) exp(−4T0)

det(Πn
kR

n
kΠ

n
k + σ̂2

nΠ
n,0
k )−T0 (21)

where

Πn
k = An(X

(#)
k )(AH

n (X(#)
k )An(X

(#)
k ))−1AH

n (X(#)
k );

Π
n,0
k = I−Πn

k ; σ̂2
n =

1

4−M
tr(Πn,0

k Rn
k).

According to our assumption that the channel noise for each
AVS is independent. The total likelihood is thus

p(Yk|X
(#)
k ) =

N
∏

n=1

p(Yn(k)|X
(#)
k ) (22)

Hence, after the importance sampling (19), the likelihood can
be evaluated according to (22). The position estimates can
also be obtained by implementing a 3-D search over the pos-
sible source location area which maximizes (21). However,
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Fig. 1. Single source estimation results under SNR = 4dB
and T0 = 8 for (a) x−; (b) y−; and (c) z− coordinate.

such a method is computationally very expensive since a 3-D
search is required.

For initialization, the particles are drawn according to a
Gaussian distribution around a coarse position estimation,
i.e., X(#)

0 ∼ N (X(#)
0 ; X̄0,Σ0) where X̄0 is the estimated

position and Σ0 is the variance of initial distribution which
characterizes the error of initial position estimates. The ad-
vantages of the proposed approach is that it does not require
a 2-D search to obtain the DOA estimates and all the signals
are directly fused to estimate the source position. Also, it can
be employed for multiple source tracking.

4. SIMULATIONS

Six sensors are deployed to formulate a distributed AVS array.
The sensor locations are: (30,−26,40.39)m, (60,−21,
169.95)m, (0,0,0)m, (40,38,−10.57)m, (−65,40,−5.43) m,
and (−100,−10,51.80)m. Such a sensor deployment is ex-
actly the same as that in [4]. Two sets of simulations are
of our interests: single source tracking and multiple source
tracking. For the former one, the tracking performance of the
proposed extended information filter based particle filtering
(EIFPF) is compared with that using the approaches in [4],
i.e., WL and RWL methods. For the latter case, we only
present the tracking results and performance analysis of the
proposed approach since WL and RWL approaches cannot

5 10 15 20 25 30
4

6

8

10

12

14

16

18

time step

10
lo

g 10
(⋅)

 

 

WL,SNR=4dB,T0=8

RWL,SNR=4dB,T0=8

EIFPF,SNR=4dB,T0=8

WL,SNR=−4dB,T0=32

RWL,SNR=−4dB,T0=32

EIFPF,SNR=−4dB,T0=32

Fig. 2. Single source scenario: RMSE for 100 MC runs.

be employed for multiple source localization scenario. The
background noise level is evaluated by SNR, and is simu-
lated by adding the complex circular i.i.d. Gaussian noise
into the received signal. The parameters for EIFPF are set as:
L = 500,Σ0 = 100I3M ,Σv = 0.01I3M , andP = 0.02I4T0 .
This parameter setup is found adequate for all following ex-
periments. The source velocities are initialized around the
ground truth. The initial positions are coarsely estimated by
maximize the likelihood function (22).

In the first simulation, a single source that is active from
(100, 113, 120)m to (−100,−90,−80)m with 30 time steps
is considered. Each time step is assumed to be 1 second.
The source thus moves with a velocity of 7m/sec. roughly
along all coordinates. Fig. 1 shows the 3-D position estima-
tion results from a single implementation under SNR = 4dB
and T0 = 8. The proposed EIFPF approach is able to con-
verge and lock on to the ground truth trajectories quickly,
and therefore consistently track the source positions. It per-
forms much better than WL and RWL based indirect local-
ization approaches. Multiple Monte Carlo (MC) implementa-
tions are also organized to further illustrate the tracking per-
formance. Fig. 2 presents the average root mean square error
(RMSE) over 100 MC runs under SNR = 4dB, T0 = 8 and
SNR = −4dB, T0 = 32. The proposed EIFPF approach
significantly outperforms the indirect localization approaches
under all simulated scenarios. Also, it can be observed that
RWL approach performs better thanWL approach. It is worth
mentioning that the RMSE is relatively smaller at the middle
of the tracking period since the source is closer to the dis-
tributed AVS array at these time steps.

In the second simulation, two simultaneously active
sources are considered: one (S1) is active from (−10,−43,
− 120)m to (−100, 60,−20)m, and the other (S2) from
(10, 80, 20)m to (110,−20, 120)m with 30 time steps. Such
motions result in a velocity of ±3.5m/sec. roughly. Fig.
3 shows the results from a single implementation under
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Fig. 3. Multiple source estimation results under SNR = 4dB
and T0 = 8 for (a) x−; (b) y−; and (c) z− coordinate.
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Fig. 4. Multiple source scenario: RMSE for 100 MC runs.

SNR = 4dB and T0 = 8. The proposed tracking approach
is able to track the trajectories of the two sources accurately.
Even though the two sources are closely spaced at the initial
steps along with x− coordinate and cross over along with y−
coordinate, the algorithm can still lock on to the source tra-
jectories. The RMSE over 100 MC runs under SNR = 4dB,
T0 = 8 and SNR = −4dB, T0 = 32 is presented in Fig.
4. It shows that the direct tracking approach is able to pro-
vide good accuracy for 3-D location estimation for multiple

simultaneously active sources. As the single source scenario,
when the source approaches to the array, better accuracy can
be achieved, and vice versa.

5. CONCLUSIONS

A PF approach for 3-D source tracking using a distributed
AVS array is developed. The proposed approach is able to
directly fuse the information from all sensors to estimate the
position. To enhance the tracking accuracy, an EIF is devel-
oped to achieve the optimal resampling, and meanwhile to
keep the computational complexity affordable. The simula-
tions show that the proposed tracking approach significantly
outperforms the indirect localization approach and is able to
track multiple simultaneously active sources accurately. The
application of the proposed approach in real acoustic environ-
ments such as room and underwater acoustic source tracking
will be considered in our future work.
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