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ABSTRACT

In this paper, we study the behavior of the angular resolution
limit (ARL) for two closely spaced sources in the context of
array processing. Particularly, we derive new closed-form ex-
pressions of the ARL, denoted by δ, for three methods: the
first one, which is the main contribution of this work, is based
on the Stein’s lemma which links the Chernoff’s distance and
a given/fixed probability of error, Pe, associated to the binary
hypothesis test: H0 : δ = 0 versus H1 : δ 6= 0. The two other
methods are based on the well-known Lee and Smith’s cri-
teria using the Cramér-Rao Bound (CRB). We show that the
proposed ARL based on the Stein’s lemma and the one based
on the Smith’s criterion have a similar behavior and they are
proportional by a factor which depends only on Pfa and Pd

and not on the model parameters (number of snapshots, sen-
sor, sources, ....). Another conclusion is that for orthogonal
signals and/or for a large number of snapshots, it is possible
to give an unified closed-form expression of the ARL for the
three approaches.

Index Terms– Angular Resolution Limit, Information The-
ory, Estimation Theory

1. INTRODUCTION

The problem of resolution limit for two closely spaced sources
in the context of array processing has attached many interests.
Generally, in the literature, there are four different ways to de-
scribe the resolution limit. The first one is based on the mean
null spectrum concerning a specific algorithm [1,2]. The sec-
ond one is based on the estimation accuracy, i.e. an implicit
equation based on the Cramér-Rao bound (CRB) [3, 4]. It is
important to highlight the strong link between the Smith’s cri-
terion [4] and the asymptotic performance of the generalized
likelihood ratio test [5]. Another approach is based on the
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detection theory using the hypothesis test formulation [5–7].
Finally, a recent and promising way to determine the resolu-
tion limit is based on the Stein’s lemma [8, 9] which estab-
lishes the relation between measures (Chernoff distance) of
the difference between two probability distributions and the
probability of error for a hypothesis test. In the literature, this
lemma has already been used to derive the relative entropy
to study detection performance and for waveform design in
the context of MIMO radar in [10, 11] and multi-static radar
in [12]. Besides, in [13], the angular resolution limit (ARL)
on resolving two closely spaced polarized sources using array
processing is also studied by using the relative entropy.

In this work, two approaches will be considered to deter-
mine the closed-form expression of the resolution limit in the
context of array processing. First, we follow the approach
based on the Stein’s lemma to derive the Chernoff distance
(CD), and then, the ARL for a fixed probability of error. Next,
we derive the ARL using the standard ways based on the
Cramér-Rao bound by applying the Lee’s criterion [3] and
the Smith’s criterion [4]. Finally, a comparison in terms of
closed-form expressions and numerical results between the
three approaches is introduced to show the relevance of the
Stein’s lemma criterion and the Smith’s criterion.

2. PROBLEM SETUP

We consider a linear sensor array of N elements in the case
of two source signals. The two source signals, denoted by
s1 = [s1(1) . . . s1(L)]

T and s2 = [s2(1) . . . s2(L)]
T , are as-

sumed to be deterministic and located in the far-field w.r.t. the
array. Each source is located by an angle-of-arrival denoted
by θm, m = 1, 2. The distance between n-th sensor w.r.t a
reference sensor is denoted by dn. Antenna array is assumed
to be central-symmetric linear and the center of array is cho-
sen as the reference sensor, i.e.

∑N
n=1 dn = 0 and we denote

σ2
a = 1

N

∑N
n=1 d

2
n. In this scenario, the signal received at
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such array for the l-th snapshot is given by

y(l) = a(ω1)s1(l) + a(ω2)s2(l) + n(l), (1)

where l = 1, . . . , L with L the number of snapshots. Let
yn(l) define the n-th element of the vector y(l). We assume
that s1 6= s2 and ||s1||

2 = ||s2||
2 = L. The steering vec-

tor has the following structures a(ωm) = [exp(jωmd1) . . .
exp(jωmdN )]T where ωm = 2π

λ
sin θm with λ denoting the

wavelength. The noise matrix for the l-th snapshot n(l) is
assumed to be independent and identically distributed (i.i.d.)
symmetric complex circular Gaussian with zero-mean and co-
variance matrix σ2IN . Let us define y = [yT (1) . . .yT (L)]T

and n = [nT (1) . . .nT (L)]T , (1) can be rewritten as

y = s1 ⊗ a(ω1) + s2 ⊗ a(ω2) + n, (2)

where ⊗ stands for the Kronecker product. In the following,
we derive the ARL for this model in two different approaches,
one based on a linearized binary hypothesis test and another
based on the Cramér-Rao bound.

3. ARL BASED ON A LINEARIZED BINARY
HYPOTHESIS TEST

If we denote δ = ω2 − ω1, the problem of resolving two
closely spaced sources can be formulated as a binary hypoth-
esis test as follows:

{

H0 : δ = 0,
H1 : δ 6= 0.

(3)

3.1. Linearized observation and new binary hypothesis
test

Assume that δ is small, by using the first order Taylor expan-
sion around the so-called center parameters ωc =

ω1+ω2

2 , i.e.

a(ω1)
1
= a(ωc) −

1
2δȧ(ωc) and a(ω2)

1
= a(ωc) +

1
2δȧ(ωc)

where symbol
1
= stands for first-order approximation and ȧ(ωc)

= ∂a(ωc)
∂ωc

, one can obtain the linear approximation of (2) as

follows 1

y
1
= (a(ωc)⊗ (s1 + s2) +

1

2
δȧ(ωc)⊗ (s2 − s1) + n.

The linearized binary hypothesis test can be rewritten as

{

H0 : y ∼ CN (a(ωc) ⊗ (s1 + s2), σ
2ILN ),

H1 : y ∼ CN (a(ωc) ⊗ (s1 + s2) +
1

2
δȧ(ωc) ⊗ (s2 − s1), σ

2ILN ).

(4)

1If the sources are equal, we need to consider a second-order Taylor ex-
pansion of the steering vectors. But this leads to untractable mathematical
derivations.

3.2. Stein’s lemma based analysis of ARL

From the Stein’s lemma [8, 9], we have the asymptotic2 rela-
tion between the CD relying the two probability density func-
tions (pdf) for test (4) and a given probability of error for a
binary hypothesis test as follows

CD(p(yn(l)|H0)||p(yn(l)|H1)) = − lim
NL→∞

1

NL
ln(Pe),

(5)

where CD(p(yn(l)|H0)||p(yn(l)|H1)) is the Chernoff distance
(for the sake of simplicity, we hereafter use CDn(l) to denote
the distance), p(yn(l)|Hi) is the pdf of element yn(l) associ-
ated to hypothesis Hi and Pe denotes a given probability of
error. The Chernoff distance between two complex Gaussian
distributions with parameterized means, i.e.

yn(l)|H0 ∼ CN ((s1(l) + s2(l)) exp(jωcdn), σ
2),

and

yn(l)|H1 ∼ CN ((s1(l) + s2(l)) exp(jωcdn)

+
1

2
δ
∂ exp(jωcdn)

∂ωc

(s2(l)− s1(l)), σ
2),

is given by [14]

CDn(l) = max
0≤k≤1

− ln

∫

Ω

[p(yn(l)|H0)]
1−k[p(yn(l)|H1)]

kdyn(l)

= max
0≤k≤1

k(1− k)

σ2

∣

∣

∣

∣

1

2
δ
∂ exp(jωcdn)

∂ωc

(s2(l)− s1(l))

∣

∣

∣

∣

2

=
δ2

16σ2
d2n|s2(l)− s1(l)|

2. (6)

Note that we have used in the above derivation the fact that
δ2

4σ2 d
2
n|s2(l)− s1(l)|

2 does not depend on k and it is straight-
forward to see that k(1 − k) is maximized when k = 1/2.
Consequently, the CD between p(y|H0) and p(y|H1) is given
by

CD =
N
∑

n=1

L
∑

l=1

CDn(l)

=
N
∑

n=1

L
∑

l=1

δ2

16σ2
d2n|s2(l)− s1(l)|

2

=
δ2

16σ2

N
∑

n=1

d2n

L
∑

l=1

|s2(l)− s1(l)|
2

=
δ2

16σ2
Nσ2

a||s2 − s1||
2. (7)

2Note the asymptotic context is not very severe since it is not necessary to
consider a large number of sensors, N , and/or a large number of snapshots,
L, but only a large product, NL, between these two quantities.
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From (5) and (7), we obtain

δ2

16σ2
Nσ2

a||s2 − s1||
2 = − lim

NL→∞
ln(Pe).

Finally, the ARL based on the CD is given by

δC =

√

−16σ2 ln(Pe)

Nσ2
a||s2 − s1||2

=

√

−8σ2 ln(Pe)

Nσ2
a(L−R

{

sH1 s2
}

)
. (8)

4. ARL BASED ON THE LINEARIZED
CRAMÉR-RAO BOUND

In this section, we apply the Smith’s criterion [4, 15] and the
Lee’s criterion [3] which are based on the estimation accu-
racy concept to determine the ARL for the considered model.
Generally speaking, Lee and Smith’s criteria are not easy to
derive since the off-diagonal terms of the CRB for general ar-
rays are a function of the ARL. So, to obtain the ARL in the
sense of Lee and Smith, we have to analytically solve a poly-
nomial of high order [16, 17] after linearization. But as we
show in the appendix for central-symmetric arrays, the CRB
is invariant to the ARL and thus the derivation of these crite-
ria is considerably simplified. Using the linearized derivation
of the CRB (see the appendix for details) for the considered
model, the ARL based on the Lee’s criterion is given by

δL = 2max

(

√

[CRB]1,1,
√

[CRB]2,2

)

=

√

√

√

√

√

2σ2

Nσ2
a

(

L−
R2

{

sH
1
s2

}

L

) , (9)

and the ARL based on the Smith’s criterion [15] is given by

δS =
√

γ([CRB]1,1 + [CRB]2,2 − 2[CRB]1,2)

=

√

γσ2

Nσ2
a(L−R

{

sH1 s2
}

)
, (10)

where γ is a translation factor [5] which can be estimated nu-
merically by solving the equation Q−1

X 2

1

(Pfa) = Q−1
X 2

1
(γ)

(Pd),

where Q−1
X 2

1

is the inverse of the right tail of the chi-square dis-

tribution, denoted by X 2
1 , and Pfa and Pd are the probability

of false alarm and detection, respectively.

5. ANALYTIC COMPARISONS

5.1. Ratios between the ARL

It can be seen that the ARL based on three criteria are pro-
portional and the factors can be derived from (8), (9) and (10)

as

δC
δS

= 2

√

−2 ln(Pe)

γ
,

δC
δL

= 2
√

− ln(Pe)β,

δL
δS

=

√

2

γβ
. (11)

where β = 1 +
R
{

sH
1
s2

}

L
. While the first factor depends

only on the probability of error and γ (which depends on the
probability of false alarm and of detection), the other factors
that related to the Lee’s criterion depend also on the number
of snapshots and the sources.

5.2. Unified expressions of the ARL

If the two sources are orthogonal, i.e. sH1 s2 = 0 or/and if the
number of snapshots is large enough i.e., L ≫ R

{

sH1 s2
}

, we
have β ≈ 1 and the ARL given here can be unified according
to

δ =

√

ξσ2

NLσ2
a

,

where

ξ = −8 ln(Pe) for the Chernoff’s ARL (12)

ξ = γ(Pfa, Pd) for the Smith’s ARL (13)

ξ = 2 for the Lee’s ARL (14)

and the ratios between these ARL are given by

δC
δS

= 2

√

−2 ln(Pe)

γ
,

δC
δL

= 2
√

− ln(Pe),

δL
δS

=

√

2

γ
. (15)

One can see the ARL obtained above do not depend on
the sources but on the configuration of the array, the power
of noise, the probability of false alarm and the probability of
detection.

6. NUMERICAL ILLUSTRATIONS

In this section, some numerical results are presented to an-
alyze and compare the behavior of the ARL determined by
the different approaches proposed above. The scenario is the
following: the sensor array is central-symmetric uniform lin-
ear array and is composed of N = 10 sensors, with inter-
element spacing (in unit of wavelengths) is 0.5, the number
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of snapshots L = 100, the probability of false alarm and the
probability of detection are Pfa = 0.01 and Pd = 0.99, re-
spectively, we obtain the probability of error Pe = 1

2Pfa +
1
2 (1− Pd) = 0.01. First, figure 1 plots the ARL δ versus the
SNR(dB)
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Fig. 1. ARL versus the SNR(dB)

One can see on figure 1 that the ARL based on the Cher-
noff distance and the Smith’s criterion are very closed. Con-
sidering a fixed value of the probability of detection Pd =
0.99, we plot on figure 2 the ARL based on the Chernoff dis-
tance and the Smith’s criterion versus the probability of false
alarm. One can see that at a certain value of Pfa, the ARL
based on these two criteria can be identical.
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Fig. 2. ARL versus Pfa at SNR = 45dB

7. CONCLUSION

In this paper, we have derived a closed-form expression of the
ARL, denoted by δ, for two closely spaced targets in the con-
text of array processing for two standard approaches, namely
the Lee and the Smith’s criteria and for a new method based
on the Stein’s lemma. The latter is based on the link between

the Chernoff distance and a given probability of error asso-
ciated to the binary hypothesis test: H0 : δ = 0 versus
H1 : δ 6= 0. The analysis has provided new interesting in-
sights on the ARL in this context. It has been seen that the
ARL based on the Chernoff distance and the Smith’s criterion
have a similar behavior and they are proportional by a factor
which depends on the probabilities of false alarm and of de-
tection and not of the signal parameters. We also show that
for orthogonal sources and/or a large number of snapshots,
it is possible to give a unified expression of the ARL for the
three considered approaches.

8. APPENDIX: DERIVATION OF THE LINEARIZED
CRB

From (2), we have y ∼ CN (a(ω1)⊗s1+a(ω2)⊗s2, σ
2ILN ).

The vector of unknown parameters is ω = [ω1 ω2]
T . It is well

known that the CRB matrix is the the inverse of the Fisher
information matrix (FIM), defined by F (ω). Hence, to obtain
the CRB, first, we derive the set of elements of the FIM using
the Slepian-Bang formula (see, e.g., [18]) as follows

F(ω1, ω1) =
2

σ2
R
{

(ȧ(ω1)
H ⊗ sH1 )(ȧ(ω1)⊗ s1)

}

=
2σ2

aNL

σ2
,

F(ω2, ω2) =
2

σ2
R
{

(ȧ(ω2)
H ⊗ sH2 )(ȧ(ω2)⊗ s2)

}

=
2σ2

aNL

σ2
,

F(ω1, ω2) =
2

σ2
R
{

(ȧ(ω1)
H ⊗ sH1 )(ȧ(ω2)⊗ s2)

}

=
2

σ2
R
{

N
∑

n=1

d2n exp(
j

2
dnδ)s

H
1 s2

}

1
=

2

σ2
R
{

N
∑

n=1

d2n(1 +
j

2
dnδ)s

H
1 s2

}

=
2Nσ2

a

σ2
R
{

sH1 s2
}

+ δR
{

jsH1 s2
}

N
∑

n=1

d3n,

F(ω2, ω1) =
2

σ2
R
{

(ȧ(ω2)
H ⊗ sH2 )R−1(ȧ(ω1)⊗ s1)

}

=
2

σ2
R
{

N
∑

n=1

d2n exp(
j

2
dnδ)s

H
2 s1

}

1
=

2

σ2
R
{

N
∑

n=1

d2n(1 +
j

2
dnδ)s

H
2 s1

}

=
2Nσ2

a

σ2
R
{

sH2 s1
}

+ δR
{

jsH2 s1
}

N
∑

n=1

d3n.

The off terms of the CRB are linearized thanks to a first-
order Taylor expansion. As the antenna array is central-symmetric
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linear and the center of array is chosen as the reference sensor,
we have

∑N
n=1 d

3
n = 0. Consequently,

F(ω1, ω2)
1
=

2N

σ2
σ2
aR

{

sH1 s2
}

.

Inverting the FIM, one can obtain the elements of the CRB
as follows

CRB = F−1(ω)

1
=

1

F(ω1, ω1)2 − F(ω1, ω2)2

.

[

F(ω1, ω1) −F(ω1, ω2)
−F(ω1, ω2) F(ω1, ω1)

]

.
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