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ABSTRACT

Wave-domain adaptive filtering (WDAF) is advantageous for

modeling loudspeaker-enclosure-microphone systems with

many loudspeakers and microphones (MIMO LEMS). The

necessary transforms may be derived by considering free

field propagation between loudspeaker and microphones first,

followed by wave field analysis of the true and simulated

microphone signals. However, transforms obtained following

this strategy are not invertible when there are more loud-

speakers than microphones. As invertibility of the transforms

is required for many applications, this restricts the applicabil-

ity of WDAF. In this paper we propose a strategy to describe

the free field propagation directly in the wave domain, so

that invertible transforms can be defined independently from

the number of actually used microphones. With this strategy,

transforms for a MIMO LEMS comprising a uniform circu-

lar microphone array and an arbitrary loudspeaker array are

derived.

Index Terms— Adaptive filtering, multichannel, wave

domain.Emerging techniques like wave field synthesis (WFS)

or Higher-Order Ambisonics (HOA) aim at providing high-

quality spatial reproduction of an acoustic scene. To facilitate

new application fields or to improve the reproduction qual-

ity these reproduction systems may be complemented by a

spatial recording system and adaptive filtering techniques.

Prominent application examples are acoustic echo cancella-

tion (AEC) or adaptive listening room equalization (LRE).

However, the typically large number of reproduction channels

for WFS or HOA makes adaptive filtering challenging due to

computational and algorithmic reasons.

Wave-domain adaptive filtering (WDAF) was proposed

for various adaptive filtering tasks in the context of massive

multichannel reproduction systems [1, 2]. Using funda-

mental solutions of the wave-equation as basis functions for

the wave-domain signal representations, WDAF enables the

use of a physically motivated approximation of the MIMO

∗This work was supported by the Fraunhofer Institute for Digital Media

Technology (IDMT) in Ilmenau, Germany.

LEMS, which allows to significantly reduce the computa-

tional effort for adaptive filtering [1]. In the following, we

investigate the transformations of the loudspeaker signals

and the microphone signals into the wave domain and refer

to them as transforms T1 and T2, respectively, to indicate

the sequence of processing. The wave-domain loudspeaker

signal representation will be denoted as free-field descrip-

tion and the wave-domain microphone signal representation

as measured wave field. Using the chosen basis functions,

transform T2 simply describes the sound pressure measured

by the microphones, while transform T1 describes the wave

field, as it ideally would be produced by the loudspeaker

array at the microphone array under free-field conditions.

Consequently, transform T1 comprises two steps, the free-

field propagation of the sound from the loudspeakers to the

microphones and a transform of the resulting sound pressure

to the wave-domain. Originally, it was proposed to model the

free-field propagation as point-to-point propagation between

all respective loudspeaker and the microphone positions.

The signal representation obtained from this should then be

transformed by transform T2 [1]. Considering the desired

transforms, this strategy is the obvious choice, but it has

some disadvantages. The most significant is that the number

of linearly independent wave field components of the free-

field description is limited by the number of microphones,

which may be less than the number of loudspeakers. Thus,

spatial information is lost and the original loudspeaker sig-

nals cannot be reconstructed from the free-field description.

This precludes the use of such a transform for LRE and even

AEC would suffer from the resulting lack of degrees of free-

dom in the wave-domain MIMO LEMS model. Here, we

propose another strategy for defining the transform T1. To

this end, we describe the free-field wave field as produced

by the loudspeakers at the position of the microphone array

directly in the wave domain. This has the advantage that

the loudspeaker signal transform is independent of the actual

number of microphones, while there are no disadvantages

compared to the original approach. With this strategy, we

derive transforms for an arbitrarily shaped loudspeaker array
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Fig. 1. Roles of the transforms and their inverses. Upper row:

wave-domain representation of MIMO LEMS, lower row:

point-to-point model with embedded wave-domain MIMO-

LEMS.

and a circular microphone array whereby an optional cylindri-

cal scatterer within the microphone array can be considered.

Thus, we provide an explicit formulation of the transforms to

the wave-domain, which was not included in [1] and [2] and

generalize the transforms mentioned in [3], which are limited

to concentrically located circular transducer arrays.

The paper is organized as follows: In Sec. 1 the MIMO

LEMS model and its desired properties are discussed. In

Sec. 2 the transforms are derived based on a continuous-

frequency description. In Sec. 3 the derived transforms are

formulated for discrete-time signal processing. Measurement

results demonstrating the practical impact of the transforms

are presented in Sec. 4 and conclusions are given in Sec. 5.

1. WAVE-DOMAIN MIMO LEMS MODEL

In this section the wave-domain MIMO LEMS model and its

attractive properties are reviewed [3]. For the conventional

point-to-point model, we consider the NL spectra of the sig-

nals emitted by the loudspeakers P̂
(x)
λ (jω) (λ = 0, . . . , NL−

1) and the NM spectra of the sound pressure signals P̂
(d)
µ (jω)

(µ = 0, . . . , NM − 1) measured by the microphones and ob-

tain

P̂ (d)
µ (jω) =

NL−1∑

λ=0

P̂
(x)
λ (jω)Hµ,λ(jω), (1)

to model the MIMO LEMS by NM × NL frequency re-

sponses Hµ,λ(jω), where λ and µ denote the loudspeaker

and microphone indices, respectively. Equivalently, we may

describe a wave-domain model using the free-field descrip-

tion P̃
(x)
l (jω) obtained from transform T1 and the measured

wave field P̃
(d)
m (jω) as the output of transform T2:

P̃ (d)
m (jω) =

NL/2
∑

l=−NL/2+1

H̃m,l(jω)P̃
(x)
l (jω), (2)

where l and m are indexing the modes in P̃
(x)
l (jω) and

P̃
(d)
m (jω), respectively, and H̃m,l(jω) models their cou-

plings. The roles of the transforms for modeling the MIMO

LEMS in the conventional or in the wave domain are depicted

in Fig. 1. Although, (1) and (2) are equivalent in their ability

to model the MIMO LEMS, Hµ,λ(jω) and H̃m,l(jω) differ

ey
∆x

RM

RL

(a) (b)

b

α

̺

Fig. 2. Exemplary loudspeaker and microphone setups of the

modeled MIMO LEMS

significantly in their properties. For illustration, we measured

all frequency responses Hµ,λ(jω) between the NL = 48
loudspeakers and the NM = 10 microphones of a MIMO

LEMS in a room with a reverberation time of T60 ≈ 0.3s.

The uniform circular loudspeaker and microphone arrays

where concentrically located, as shown in Fig. 2(a), with

radii RL = 1.5m and RM = 0.05m. Using the transforms

as derived below in Sec. 2, H̃m,l(jω) was determined from

Hµ,λ(jω). Their magnitudes are shown in Fig. 3 for three

different frequencies ω. It can be clearly seen that while

all the loudspeaker-microphone couplings are approximately

equally strong, in the wave domain, some couplings in the

vicinity of the diagonal l = m are significantly more impor-

tant than the rest. This diagonal dominance in |H̃m,l(jω)|
leads to a decisive algorithmic and computational advantage

over conventional point-to-point models for adaptive filtering

tasks [1, 2, 3], e. g., the possibility to model the MIMO LEMS

by only its dominant wave-domain couplings.

2. DERIVATION OF THE TRANSFORMS

In this section, the actual wave-domain transforms T1 and T2

are derived, generalizing the transforms used in [3]. As, for

WDAF, the MIMO LEMS is considered as a spatially sam-

pled wave field, the transducer positions, i. e., the sampling

positions have to be known exactly. This work is concerned

with transducer arrays located in a plane, where we assume

the microphone array to be a uniform circular array while

the loudspeaker array may have an arbitrary shape. Exam-

ples of such setups are shown in Fig. 2. Within this work,

the loudspeaker positions are given in polar coordinates by
~lλ = (αλ, ̺λ)

T
. The microphone array consists of equis-

paced microphones on a circle with radius RM , with the po-

sitions given by

~mµ =

(

αµ = µ ·
2π

NM
, ̺µ = RM

)T

. (3)

Considering a circular microphone array, a natural choice for

the wave-domain basis functions are the so-called circular
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Fig. 3. Logarithmic magnitudes of Hµ,λ(jω) and H̃m,l(jω)
in dB with µ = 0, . . . , NM −1, λ = 0, . . . , NL−1, and m =
−4, . . . , 5, l = −23, . . . , 24, for different frequencies ω =
2πf, f = 1 kHz, 2 kHz, 4 kHz normalized to the maximum

of all subfigures in each row.

harmonics [4], while plane waves would be more suitable for

linear array geometries. Thus we describe the spectrum of

the sound pressure P (α, ̺, jω) at any point ~x = (α, ̺)T by a

sum of circular harmonics

P (α, ̺, jω) =

∞∑

m=−∞

(

P̃ (1)
m (jω)H(1)

m (k̺)

+ P̃ (2)
m (jω)H(2)

m (k̺)
)

ejmα, (4)

where H
(1)
m (x) and H

(2)
m (x) are m-th order Hankel functions

of the first and second kind, respectively. The imaginary unit

is denoted by j and k = ω/c is the wave number with the

angular frequency ω and the speed of sound c. Assuming no

acoustic sources within the microphone array, it is sufficient

to consider the superposition of incoming waves P̃
(1)
m (jω)

and outgoing waves P̃
(2)
m (jω) and describe P̃

(d)
m (jω) by

P̃ (d)
m (jω)Bm (k̺) = P̃ (1)

m (jω)H(1)
m (k̺)

+ P̃ (2)
m (jω)H(2)

m (k̺) , (5)

where Bm (kRM ) = Jm(kRM ) in the free field and

Bm (kRM ) = Jm(kRM )−
J ′
m(kRM )H

(1)
m (kRM )

H′
m(kRM )

(6)

if there is a cylindrical scatterer within the microphone array.

Here, Jm(x) is the m-th order Bessel function and J ′
m(x)

and H′
m(x) are the derivatives of Jm(x) and H

(1)
m (x) with

respect to x, respectively [5]. This set of basis functions is

similar to those used in [6].

2.1. Transform T2

Transform T2 is used to obtain the wave field represented

by the actual microphone signals. Using (4) to describe the

sound field in the vicinity of the microphone array, we can

obtain P̃
(d)
m (jω) by a Fourier series expansion:

Bm (kRM ) P̃ (d)
m (jω) =

1

2π

∫ 2π

0

P (α,RM , jω)e−jmαdα.

(7)
Since we can only use a finite number of microphones in prac-

tice, we sample the wave field at discrete positions and ap-

proximate the integral in (7) by a sum to obtain

P̃ (d)
m (jω) :=

1

NMBm (kRM )

NM−1∑

µ=0

P̂ (d)
µ (jω)e−jmαµ . (8)

Due to the finite sum in (8), there are only NM non-redundant

modes observable, so we consider only the mode orders m =
−(NM/2− 1), . . . , NM/2.

From (8), we may directly derive the inverse of transform

T2, which is given by

P̂ (d)
µ (jω) =

NM/2
∑

m=−NM/2+1

Bm (kRM ) P̃ (d)
m (jω)ejmαµ . (9)

2.2. Transform T1

In this section we derive the transform T1 which is used

to describe the wave field emitted by the loudspeakers as

it would appear at the microphone array under free-field

conditions. As we only consider a two-dimensional wave

field, while the actual wave propagation between the loud-

speakers and the microphone array is three-dimensional in

reality, such a description only represents an approximation.

Assuming a large minimum loudspeaker-microphone dis-

tance (RM ≪ min{̺λ}) and considering only wavelengths

larger than RM , we describe all loudspeaker contributions at

the position of the microphone array, i. e., the origin of the

coordinate system, as plane waves [7]. As the true loudspeak-

ers are better described as point-like sources than as plane

sources, we describe the resulting attenuation and the delay

for the wave propagation from the individual loudspeakers to

the origin of the microphone array by the three-dimensional

Green’s function [8]

G(~0|~lλ, jω) =
e−j̺λk

̺λ
. (10)

From (10) we may derive an intermediate transform providing

an approximate plane wave decomposition of the loudspeaker

contributions at the origin:

P̃
(p)
λ (jω) ≈ P̂

(x)
λ (jω)G(~0|~lλ, jω), (11)

where P̃
(p)
λ (jω) describes the spectrum of a plane wave with

the incidence angle αλ. However, as we use circular harmon-

ics as basis functions, we have to transform P̃
(p)
λ (jω) again.

As RM ≪ min{̺λ}, we may also assume the attenuation

through the propagation along the microphone array as being

negligible compared to (10). The sound pressure resulting

from the superposition of all P̃
(p)
λ (jω) is given by
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P (α, ̺, jω) =

NL−1∑

λ=0

P̃
(p)
λ (jω)ej̺ cos(α−αλ)k. (12)

According to [3] we may use the Jacobi-Anger expansion to

transform (12) using (7). The frequency response resulting

from a possible scatterer inside the circular microphone array

is already equalized by (8), so we may disregard a possible

scatterer for the derivation of transform T1. With this assump-

tion and by substituting m by l relative to (8), we obtain

P̃
(x)
l (jω) = jl

NL−1∑

λ=0

P̃
(p)
λ (jω)e−jlαλ . (13)

As for the microphones in (8), we account for the limited spa-

tial resolution of the loudspeaker array and limit the consid-

eration to NL non-redundant components l = −(NL/2 −
1), . . . , NL/2. From (11) and (13), we obtain the explicit def-

inition of transform T1

P̃
(x)
l (jω) := jl

NL−1∑

λ=0

P̂
(x)
λ (jω)

e−j̺λk

̺λ
e−jlαλ . (14)

The inverse of T1 may also be derived straightforwardly in

two stages. From (13) we may directly derive

P̃
(p)
λ (jω) =

1

NL

NL/2
∑

l=−NL/2+1

P̃
(x)
l (jω)j−lejlαλ . (15)

As the e−j̺λk term in (10) describes a delay, an inverse of

(11) would be non-causal, requiring a delay by max{̺λ}/c
for realizability. Assuming furthermore that (11) holds for an

equation rather than an approximation, leads to

P̂
(x)
λ (jω) := P̃

(p)
λ (jω)̺λe

j(̺λ−max{̺λ})k, (16)

so that the inverse of transform T1 is given by (15) and (16).

3. DISCRETE-TIME REPRESENTATIONS OF THE

TRANSFORMS

In this section, discrete-time or DFT-domain-compatible rep-

resentations of the derived transforms are presented. Con-

sidering (8) we can see that transform T2 may be realized

in two steps: A DFT with respect to the microphone indices

and the inverse of Bm (kRM ). The first step is easy to real-

ize because there is no frequency-dependency to be consid-

ered. Consequently, this part of the transform remains iden-

tical, independently of any temporal transform. The inverse

of Bm (kRM ) has only a frequency-dependency but no spa-

tial dependency. Thus, filter-design methods may be used to

determine a suitable FIR or IIR filter for each m separately.

However, when there is no scatterer within the microphone

array Bm (kRM ) exhibits zeros rendering the design of a per-

fect inverse impossible. To circumvent this problem we use

Bm (kRM ) P̃
(d)
m (jω) instead of P̃

(d)
m (jω) as representation

for the measured wave field. By doing so, Bm (kRM ) (and

not its inverse) is modeled implicitly in the MIMO LEMS

model, rendering a filter design for transform T2 unneces-

sary. For acoustic echo cancellation (AEC) this is preferable

because it simplifies the realization of the transforms with-

out any cost [3]. For listening room equalization (LRE) all

signal representations remain consistent, but it has to be con-

sidered that the minimized error signal for the measured wave

field does no longer directly describe the distortion of the re-

produced wave field apart from the microphone positions, but

a frequency-dependent weighting of this error is introduced.

For the inverse of T2, the spatial transform follows the fil-

tering of the individual wave-domain signals, where the filter

design according to Bm (kRM ) is less challenging than for

its inverse. Again, when using Bm (kRM ) P̃
(d)
m (jω) as rep-

resentation for the measured wave field, no filter design is

required.

The description of transform T1 in two steps allows a re-

alization procedure similar to transform T2. The realization

of (11) is straightforward, as it can be accomplished by frac-

tional delay filters [9], while (13) can be directly applied due

to its frequency-independence. The same holds for (16) and

(15), respectively.

To give an example of the realized transforms we use

Bm (kRM ) P̃
(d)
m (jω) for transform T2. Consequently, (8)

and (9) may be directly used, i. e., represented by a NM×NM

MIMO FIR-filter structure describing weighted Kronecker

deltas. For transform T1, we have to define the discrete-time

impulse responses

h
(T1)
l,λ (n) = jl

hd (n, ̺λfs/c)

̺λ
e−jlαλ , (17)

which are used for computing the contribution of the discrete-

time loudspeaker signal λ to the wave field component l in

the free-field description according to (14). Here, fs is the

sampling frequency and

hd(n, d) =

{
sin(π(n−d−(LT−1)/2))

π(n−d−(LT−1)/2) for 0 ≤ n < LT ,

0 elsewhere

(18)
is an FIR filter with the odd length LT according to [9] de-

scribing the non-integer delay d. For the inverse of T1, we

may write in the same way

h
(T1i)
λ,l (n) = j−lhd(n, (max{̺λ} − ̺λ)fs/c)̺λ

ejlαλ

NL
. (19)

4. VALIDATION OF THE DERIVED TRANSFORMS

In this section the derived wave-domain transforms are vali-

dated with measured impulse responses. For the evaluation,

we consider the total energy of the mode couplings by

Em,l =
1

2π

∫ ωmax

0

|H̃m,l(jω)|
2dω, (20)

where ωmax = 2π4000Hz is the maximum considered fre-

quency. For the MIMO LEMS the concentric array setup as

described in Sec. 1 was considered. In contrast to Sec. 1
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Fig. 4. Total energy Em,l of the mode couplings for different

array setups in dB with respect to max{Em,l}. The loud-

speaker array is shifted by ∆x on the x-axis.

the position of the circular loudspeaker array was shifted as

stated, or incorrect information about the array position was

used for the derivation of the transforms. For the inverse of

transform T1 and transform T2, we used the example from

Sec. 3 with LT = 151 and fs = 8000Hz. In Fig. 4, Em,l is

shown for different array setups. There, the loudspeaker ar-

ray was shifted by ∆x on the x-axis to show the suitability

of the transforms for differently located loudspeaker arrays.

For the array setups shifted by ∆x = 0,−25, and −50cm,

respectively, the diagonal couplings cover 89.7%, 80.8%, and

75.6% of the total energy of all couplings, respectively. Since

the diagonal-dominant structure may be preserved, we can

state that the presented transforms are suitable for different ar-

ray setups. However, the small loudspeaker-microphone dis-

tances for larger ∆x degrade the diagonal dominance, which

is not surprising, because we required a large loudspeaker-

microphone distance with RM ≪ min{̺λ} in the derivation.

This result may be generalized to other loudspeaker array ge-

ometries.

For the results shown in Fig. 4, perfect knowledge about

the true array positions was assumed. In practice, position-

ing errors must be expected. To evaluate the robustness of

a WDAF system against mispositioned arrays, we determined

Em,l for wave-domain transforms based on inaccurate knowl-

edge about loudspeaker array position, where we introduced

an error ey in y-direction. In Fig. 5 we can see that an error ey
of 1cm does not destroy the desired diagonal dominance and

an error of ey of 2cm might be marginally acceptable. For an

error ey of 4cm, we can see that the desired properties of the

wave-domain representation are seriously impaired. The di-

agonal couplings cover 81.2%, 60.9%, and 24.7% of the total

coupling energy for ey = 1, 2, and 4cm, respectively.

e
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Fig. 5. Total energy Em,l of the mode couplings for accu-

rate array positioning in dB with respect to max{Em,l}. A

deviation by ey along the y-axis was introduced.

5. CONCLUSIONS

In this paper generic transforms to and from the wave do-

main for a MIMO LEMS with a circular microphone array

and an arbitrarily shaped loudspeaker array were discussed.

The realization of those transforms with discrete-time sys-

tems was also presented. Measurement results show that these

transforms are suitable for practically relevant array setups,

whereby an array mispositioning up to several centimeters ap-

pears to be acceptable. A future research goal is the extention

of this strategy to other microphone array geometries.
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