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ABSTRACT
Recent advances in multimedia technology opened the path
for individual manipulation of the different audio objects
within a multichannel mix, for both sampling and karaoke
applications. This requires the transmission of these objects
as an additional information. Informed Source Separation
(ISS) is an adequate framework for this problem. Its main
idea is not to transmit the objects themselves, but rather the
parameters required to recover them using the mixtures and
separation algorithms. In recent studies, the connection was
made between ISS and source coding and the concept of
coding-based ISS (CISS) was introduced. CISS differs from
classical source coding in its use of the mixtures, which per-
mits to reduce the bitrates required to convey audio objects
compared to source coding alone with the same model. In this
study, we extend existing work on CISS to the case of multi-
channel mixtures and demonstrate a considerable increase of
performance over classical ISS.

1. INTRODUCTION

Emerging technologies have created new ways to interact
with musical contents, the so-called active listening scenar-
ios, which include separate manipulation, muting or respatial-
ization of the constituent sound objects, or sources, playing
within a musical track. Special cases of interest include
karaoke or immersion of the listener into surround render-
ing. To this purpose, it is mandatory to transmit not only the
mixture as in the usual case, but also its separate constituent
audio objects. It was early acknowledged [2] that a solution
is to consider the whole set of objects as one multichannel
signal and to make use of spatial cues to recover it from the
downmix. This idea led to the Spatial Audio Object Cod-
ing (SAOC) standard. Independently, researchers from the
source separation community reported [9] that source sep-
aration could be used to recover constituent sources from a
mixture in this context. The difference between the classical
blind scenario and this particular informed configuration is
that the sources are known at some encoding stage, during
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which a side information can be computed and transmitted
along with the mixtures to be used for separation at a decod-
ing stage, when the sources are no longer available. PARVAIX
et al. introduced the term Informed Source Separation (ISS)
for this strategy. The common idea of all methods exploiting
ISS [9, 6] is not to transmit the sources, but rather parameters
that permit to recover them using the mixtures.

The main issue with these methods is that their perfor-
mance is bounded by the best estimates that can be provided
by the considered separation method. Hence, whatever the
bitrate spent on providing better parameters for the separa-
tion algorithms, the quality of the estimates does not improve
consequently. This phenomenon is reminiscent of parametric
coding of waveforms and stems from the intrinsic limitations
of the model used to encode the signals of interest. Recently,
OZEROV et al. [8] demonstrated that ISS could be signifi-
cantly improved so as to consistently benefit from additional
bitrate as in source coding [3, 11] and introduced Coding-
based ISS (CISS) for this purpose. The main idea of CISS is
to encode the signals of interest using a probabilistic model as
in source coding. Instead of using a distribution which does
not make use of the mixture, CISS encodes the sources rely-
ing on their a posteriori distribution given the mixture, whose
entropy is necessarily smaller and which thus leads to reduced
bitrates. This idea can be somewhat related to the coding of
the residual between the original sources and their estimates
as in SAOC. Indeed, these techniques first perform separation
of the mixtures and then encode the residuals using a sepa-
rate source model. CISS can be understood similarly as an
estimation of the sources as the mean of their posterior dis-
tribution given the mixture, followed by an encoding of the
residuals using posterior covariance as signal statistics. Given
this parallel, several advantages of CISS over the aforemen-
tioned approaches can be highlighted. First, CISS exploits
posterior dependencies between the sources, instead of inde-
pendently encoding the residuals. Second, parameters used
for parametric source reconstruction and waveform coding of
residuals are coupled via posterior distribution and can thus
be transmitted more efficiently.

Even if the fundamental idea to encode the signals us-
ing posterior distributions can be exploited in many settings,
a particular CISS scheme was presented in [8] for single-
channel mixtures and Gaussian source model. In this study,
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we generalize this model to multichannel mixtures using a
framework inspired by [1] and [6] and we make use of a more
specialized Nonnegative Tensor Factorization (NTF) source
model as presented in [6, 7], which can efficiently exploit
long-term and inter-sources redundancies.

This article is structured as follows. First, we present
the Gaussian model we consider for multichannel mixtures in
Section 2. Sections 3 and 4 are devoted to model estimation
and encoding and to source encoding, given the mixture and
the encoded model. Finally, the proposed method is evaluated
in Section 5.

2. MODEL

2.1. Notation

All signals considered are regularly sampled time series of
length Nn. We will make use of a Time-Frequency (TF)
representation for the signals and we choose the Short-Term
Fourier Transform (STFT) for this purpose. In this study,
waveforms in the temporal domain are written using tilde, e.g.
x̃ (n) and their STFT using the corresponding letter without
tilde, e.g. x (ω, t). Bold lowercase indicates a vector while
uppercase indicates a matrix or a tensor. Nω and Nt are, re-
spectively, the number of frequency bins ω and the number of
frames t of the STFT.

The sources, or audio objects, are defined as M time se-
ries s̃m and the mixture is defined as a set ofK time series x̃k.
The mixture is obtained through a processing of the sources.
For some given source s̃m, a mixing process produces a set
of K signals {ỹkm}k=1,···,K called mth source image. All

images are summed up to produce the kth channel x̃k of the
mixture.

In the STFT domain, we denote

s (ω, t) = [s1 (ω, t) , . . . , sM (ω, t)]
>

x (ω, t) = [x1 (ω, t) , . . . , xK (ω, t)]
>

as the M × 1 and K × 1 column vectors gathering all sources
and all channels of the mixture for TF bin (ω, t) with ·> de-
noting transposition. The K × 1 image of source m at (ω, t)

writes ym (ω, t) = [y1m (ω, t) , . . . , yKm (ω, t)]
>.

2.2. Source model

In all the following, we assume that the sources are indepen-
dent and modeled as Locally Stationary Gaussian Processes
(LSGP). Basically, this means that within each frame, the
sources are stationary and that all the frames of the signals
can be considered independent. Under this assumption and
provided that the frames are of sufficient length, it can be
shown that all TF bins of sm are independent and normally
distributed:

sm (ω, t) ∼ Nc (0, vm,ω,t) ,

where Nc is the circular symmetric complex normal distribu-
tion and vm,ω,t is the variance of source m at TF bin (ω, t).
As can be seen, the LSGP model is parameterized by the
M × Nω × Nt tensor V = {vm,ω,t}m,ω,t and thus comes
with as many parameters as the number of TF bins for the
source signals. Since V has to be transmitted from the coder
to the decoder, it is of importance to find an appropriate com-
pression scheme to reduce its weight. Many methods can be
used to this end, corresponding to different source models.
Following the work in [6, 7], we make use of Nonnegative
Tensor Factorization (NTF) to decompose vm,ω,t as:

vm,ω,t =

R∑
r=1

wωrhtrqmr, (1)

where W = {wωr}ω,r, H = {htr}t,r and Q = {qmr}m,r

are Nω × R, Nt × R and M × R nonnegative matrices, re-
spectively, and where R is often called the number of com-
ponents. In that case, the source parameters θs are given
by θs = {W, H, Q}. As demonstrated e.g. in [6, 7], an
interesting feature of this particular source model is that it
permits to exploit long-term as well as inter-sources redun-
dancies. Other models may be used for V including image
compression schemes as in [6].

The source model being given, two main elements are still
missing. First, how the parameters θs are estimated and sec-
ond, how they are quantized so as to yield a transmitted quan-
tized source model θ̄s. Both problems are considered in Sec-
tion 3.

2.3. Mixing model

Many studies in source separation model the image of a
source s̃m as produced through convolutive mixing, which
means that there are K filters ãkm such that ỹkm (n) =
(ãkm ∗ s̃m) (n) where ∗ denotes convolution. Provided the
mixing filters are sufficiently short, this expression can be
cast into the STFT domain as:

ykm (ω, t) ≈ akm (ω) sm (ω, t) , (2)

where akm (ω) is the frequency response of filter ãkm at fre-
quency bin ω. Let am (ω) = [a1m (ω) , . . . , aKm (ω)]

> and
let A (ω) = [a1 (ω) , . . . ,aM (ω)] be the mixing matrix at
frequency bin ω. The mixture is then supposed to be the sum
of the images:

x (ω, t) =

M∑
m=1

ym (ω, t) + ε (ω, t) , (3)

where ε is a complex K × 1 additive white Gaussian term
which accounts for both model and mixing noise and which
is supposed to be distributed as follows:

ε (ω, t) ∼ Nc

(
0, diagσ2 (ω)

)
, (4)
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where σ2 (ω) =
[
σ2

1 (ω) , . . . , σ2
K (ω)

]>
and diagσ2 (ω) is

a diagonal matrix whose diagonal coefficients are given by
σ2 (ω). Let θm =

{
{A (ω)}ω ,

{
σ2 (ω)

}
ω

}
be the set of

all mixing parameters. Combining (2), (3), (4) and defining
Css (ω, t) = diag [v1,ω,t, . . . , vM,ω,t], we get

x (ω, t) | θsθm ∼ Nc (0,Cxx (ω, t)) ,

where

Cxx (ω, t) = A (ω)Css (ω, t)AH (ω) + diagσ2 (ω) (5)

is the prior covariance matrix of the mixture.

2.4. A posteriori distribution

Now, assume the K × 1 mixture x (ω, t) is available as well
as the parameters θ = {θs, θm} of the LSGP formalism as
defined above. We consider the case where the original M
sources are to be recovered. For some TF bin (ω, t), we
focus on the distribution p (s (ω, t) | x (ω, t) , θ) of s (ω, t)
given x (ω, t) and θ, which summarizes what is known about
s (ω, t) after observation of x (ω, t) and knowledge of θ. First,
the joint distribution of s (ω, t) and x (ω, t) given θ writes:

Nc

(
0,

[
Css (ω, t) Css (ω, t)AH (ω)

A (ω)Css (ω, t) Cxx (ω, t)

])
. (6)

Then, the distribution of s (ω, t) given x (ω, t) and θ is ob-
tained through conditioning of this joint distribution to yield:

s (ω, t) | x (ω, t) , θ ∼ Nc

(
µpost (ω, t) ,Cpost (ω, t)

)
,

(7)
with

G (ω, t) = Css (ω, t)AH (ω)Cxx (ω, t)
−1

µpost (ω, t) = G (ω, t)x (ω, t)

Cpost (ω, t) = Css (ω, t)−G (ω, t)A (ω)Css (ω, t) .

3. MODEL ESTIMATION AND ENCODING

3.1. Model estimation

At the encoder, we suppose that both the sources s (ω, t) and
the mixture x (ω, t) are available. s (ω, t) is to be encoded
using the distribution p (s | x, θ) given by (7). However, the
model parameters θ that will be transmitted need to be esti-
mated first. In a Bayesian paradigm, they may be chosen as
those maximizing (7) when both s and x are known, leading
to a discriminative approach as depicted in Fig. 1 (a). In-
deed, such a choice produces θ that maximize the a posteriori
probability of the signals to be recovered given the mixture
and thus leads to the minimal required bitrate for encoding.

Still, such a discriminative model learning is hard to han-
dle using the parameterization of p (s | x, θ) given in (7). An-
other solution is to maximize p (s,x | θ) instead, leading to a

Fig. 1. Two different approaches for model learning.

generative approach, as was done in [8, 6] and as is depicted
in Fig. 1 (b). Basically, the generative approach permits to
estimate the parameters θ which best model the generation of
the data, instead of focusing on the best parameters for the
estimation of the sources given the mixture. Even if it leads
to suboptimal results in terms of encoding, the generative ap-
proach has an appealing advantage of tractability.

First, θs was trained through maximization of p (s | θs).
In many studies, it was demonstrated that learning θs in the
Gaussian case is equivalent to the minimization of the Itakura-
Saito (IS) divergence between |S|2 =

{
|sm (ω, t)|2

}
m,ω,t

and V. In the NTF source model (1) considered here, learn-
ing can hence be done through decomposition of |S|2 using
the IS divergence as a cost function as in [6].

Second, supposing that θ̄s, s and x are known, θm was
trained through maximization of p

(
x | s, θ̄s,θm

)
. This is

achieved through the EM algorithm presented in [1] with the
difference that some quantities in the ISS case are kept fixed,
e.g. s and the quantized source model θ̄s. This algorithm
yields the maximum likelihood estimate θm for the mixing
parameters.

3.2. Model encoding

When θ has been estimated, it is to be quantized in order to
form a quantized model θ̄ =

{
θ̄s, θ̄m

}
. Using some approx-

imations [6, 8], it can be shown1 that a quantization of the
source model θs minimizing the squared error between log v
and its quantized version maximizes the likelihood. For the
NTF source model (1), this leads to uniform quantization of
logW, logH and logQ using step-sizes respectively propor-
tional to

√
Nω ,
√
Nt and

√
M . The resulting indices are Huff-

man encoded as in [7].

4. SOURCE ENCODING

In our previous work on ISS [6], we simply considered the
source estimates to be given by their a posteriori mean. This
strategy may also be followed here by estimating the sources
s at the decoder as the a posteriori mean given by (7). Indeed,
as this distribution is Gaussian, this leads to the Minimum
Mean Squared-Error (MMSE) estimate given x and θ.

Still, as highlighted in [8], this scheme can be significantly
improved when one considers the source encoding of s (ω, t)

1Due to page limitation, this derivation is left for a longer study.
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Algorithm 1 Coding-based ISS for multichannel mixtures.
For all TF bins (ω, t):

1. Compute µpost and Cpost as in (7).

2. Compute Cpost = Udiag [λ1, . . . , λM ]UH .

3. Compute z = UH
(
s (ω, t)− µpost

)
.

4. Quantize each dimension m of z using two uniform
quantizers of step-size ∆s

2 for the real and imaginary
parts of zm, to yield quantized z̄m. Using an arithmetic
coder as an entropy coder [11], the effective codeword
length (in bits) is given by:

−
M∑

m=1

log2

ˆ
re (z − z̄m) ≤ ∆s

2

im (z − z̄m) ≤ ∆s

2

Nc (z | 0, λm) dz

5. Quantized vector s̄ (ω, t) can be reconstructed through

s̄ (ω, t) = Uz̄ + µpost.

using distribution (7) instead. This Coding-based ISS scheme
has several advantages. First, the quality of the estimates is no
longer bounded by Oracle estimators. Second, it is more effi-
cient than usual source coding using only prior distributions,
because it makes use of the mixture. Finally, recent advances
in source coding [11] can be straightforwardly used instead
of having to rely on ad-hoc techniques for the transmission of
the residuals as done in [2].

More specifically, the sources s (ω, t) are encoded us-
ing model-based constrained entropy quantization based on
scalar quantization in the mean-removed Karhunen-Loeve
Transform (KLT) as described in [11]. For some particular
TF bin (ω, t), let Cpost be the posterior covariance matrix
as given in (7) and let Cpost = Udiag [λ1, . . . , λM ]UH

be its eigenvalue decomposition. Cpost being positive def-
inite, λm ∈ R+. UHs (ω, t) is the KLT of s (ω, t) given
x (ω, t). Assuming the MSE distortion, uniform quantization
is asymptotically optimal for the constrained entropy case
[3]. Thus, we consider uniform scalar quantization of s (ω, t)
with a fixed source step-size ∆s in the mean-removed KLT
domain, which is summarized in Alg. 1.

Recent advances in source coding [5] may be used to
demonstrate on theoretical grounds why it is much more
efficient to allocate some bitrate to source coding than to
increase the quality of the model as experimentally verified
in [8]. If no bitrate is allocated to source quantization, CISS
becomes equivalent to classical ISS, i.e. the source estimates
coincide with µpost as given in (7). This latter scheme is
called MMSE-ISS in the following.

5. EXPERIMENTS

The proposed method was evaluated on a set of 14 excerpts
sampled at 44.1kHz of professionally produced recordings for
which all constituent sources are available. Each excerpt is
approximately 30s long and composed of 5 to 10 sources.
Two mixing scenarios were considered: linear instantaneous
and convolutive mixtures using short Head Related Transfer
Function filters of order 200.

The metrics considered for evaluation are the Signal to
Distortion Ratio (SDR) of BSSEval [10] between original and
estimated sources as well as the Perceptual Similarity Mea-
sure (PSM) of PEMO-Q [4]. Both metrics are intended to
be related to perceptual quality of the estimates, but SDR is
mostly used in the source separation community, while PSM
is more common in the coding community.

CISS and MMSE-ISS were run at various levels of qual-
ity, corresponding respectively to different choices for the
source quantization step-size ∆s in Alg. 1 for CISS and to
different number of components R for MMSE-ISS. As done
in [6], all results are compared to those of the oracle MMSE
estimate, obtained as the mean given by (7) using |S|2 in-
stead of V. This permits to compare metrics across different
excerpts.

For a given excerpt and a given quality, the estimated au-
dio objects were first compared to the original. Second, the
obtained SDR and PSM scores were averaged so as to obtain
the corresponding metric for this excerpt and quality. Third,
the metrics obtained by the oracle estimate on the same ex-
cerpt were subtracted so as to obtain the differential metric
δSDR (excerpt, bitrate) and δPSM (excerpt, bitrate). Finally,
for a given method and each metric, the δ of all excerpts were
merged together and the scatter plots (bitrate, δ) are displayed
in Fig. 2 for both instantaneous and convolutive mixtures.

As can be seen, CISS outperforms MMSE-ISS for both
the SDR and PSM metrics. Most noticeably, the performance
of CISS is seen not to be bounded by oracle performance but
to consistently increase with the bitrate. Still, the proposed
method does not yet include a perceptual model, which ex-
plains why the SDR score benefits more than PSM from the
source coding strategy. Indeed, it is close to a squared-loss
criterion. However, CISS permits to easily include percep-
tual coding through a further perceptual weighting in Alg. 1,
expressed directly on the source signals. We are currently in-
vestigating this point.

6. CONCLUSION

In this study, we extended recent work on coding-based in-
formed source separation to multichannel mixtures. Such an
extension allows recovering the original sources for convolu-
tive mixing processes. Furthermore, the framework we pro-
pose is compatible with any compression technique applied
on the spectrograms of the mixture for source modeling. In
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Fig. 2. Rate-SDR and rate-PSM curves for the proposed CISS and MMSE-ISS schemes using NTF as a source model for both
instantaneous and convolutive mixtures.

this study, we made use of the recent Nonnegative Tensor Fac-
torization model, which efficiently exploits long-term as well
as inter-sources redundancies.

The use of a coding-based strategy to encode the signals
permits to consistently increase the quality of separation when
more bitrate is available and our experiences have shown that
it is often most efficient to use this approach than to spend
bitrate in better model parameters, as is predicted by the the-
ory. Current work focuses on better source models and the
use of perceptual weighting. Both can easily be included in
the proposed framework.
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