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ABSTRACT

The development of hyperspectral instruments requires new

methods for data processing and analysis. We focus in this

work on the estimation of the flux, position and width of spec-

tral lines from astrophysical data, necessary to study the kine-

matics of galaxies. Classically used estimation methods, such

as the method of moments and the maximum likelihood (ML),

neglect the effect of the spatial Point Spread Function of the

data acquisition system. The aim of this paper is to propose

3D deconvolution methods: the first is based on the ML esti-

mator; a second introduces weak priors on the parameters and

computes the posterior mean estimator with a Monte-Carlo

Markov Chain, using a hybrid Gibbs/Metropolis-Hastings al-

gorithm. The methods are compared on simulated hyperspec-

tral data and the latter is shown to give the best results, in

particular in the case of a low signal to noise ratio.

Index Terms—

Deconvolution, estimation, MCMC, hyperspectral data,

Gibbs sampler, emission line, galaxy kinematics

1. INTRODUCTION

The development of hyperspectral instruments, able to per-

form at once the acquisition of images over a large number of

wavelengths, is a revolution for scientists in remote sensing

and astrophysics. Hyperspectral images not only correspond

to the observation of an object in several wavelength bands,

but associate to each pixel a full spectrum. Processing and

analysis of such data present a challenge for the signal and im-

age processing community. One example is MUSE [1], which

will be a second generation instrument for one of the 8 me-

ter diameter telescopes of the VLT at Paranal (Chile). MUSE

aims at providing datacubes constituted of 300×300 pixel im-
ages (for a field of view of 1 arcmin2 in theWide Field Mode–

WFM) with up to 4000 wavelengths in the visible spectrum,

for each observation, with typical exposure times from a few

minutes up to a few hours.

Our work is part of the DAHLIA project, which aims at

developing new methods and algorithms adapted to the anal-

ysis and processing of such hyperspectral data. In particular,

This work was partially supported by ANR project 08-BLAN-0253-01

DAHLIA - Dedicated Algorithms for HyperspectraL Imaging in Astronomy.

this project focuses on the fusion, deconvolution, source sepa-

ration and source detection tasks. The main goal of this study

is to present a reliable method to estimate the flux, the rela-

tive velocity and the velocity dispersion of a rotating galaxy,

from hyperspectral data, which is necessary when studying

the kinematics of a galaxy. As the hyperspectral data are

blurred by the Point Spread Function (PSF) of the acquisition

system, such estimations correspond to a 3D deconvolution

problem.

In section 2, we briefly describe the different models for

the data, Point Spread Function (PSF) and noise. Section 3

presents existing estimation methods, which work indepen-

dently for each spatial position, not accounting for the spatial

PSF. We introduce in section 4 a method based on the poste-

rior mean estimator and stochastic sampling to solve this es-

timation problem. Then, we propose in section 5 a deconvo-

lution method, generalizing the previous estimation method,

estimating jointly the parameters for every spatial position,

accounting for the spatial PSF. Finally some simulation re-

sults are shown in section 6.

2. PROBLEM STATEMENT

2.1. Model for the object

An emission line at a spatial position s can be simply mod-

elled as a Dirac delta function a(s)δ(λ− λ0) where λ0 is the

emission wavelength and a(s) its corresponding flux. The ex-
pansion of the universe shifts the line in the spectral direction

λ (red-shift). Moreover, due to the galaxy’s kinematics, the

emission line is spectrally shifted and enlarged. As a first ap-

proximation, the resulting spectral line can be modelled with

a Gaussian function:

L(s, λ) =
a(s)√
2πw(s)

· exp
(
−1
2

(λ − c(s))2

w(s)2

)

= a(s) · ℓ(c(s), w(s), λ)

where c(s) and w(s) are the position and the width of the

line. Studying the kinematics of a galaxy requires to estimate

from the data the maps a(s), c(s) and w(s) for each spatial
position s.
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2.2. Point Spread Function (PSF) model

The observed object is blurred spatially and spectrally by the

atmospheric effects, the telescope and the instrument. For

MUSE data, the global 3D PSF can be considered separable

in the spatial and spectral directions, denoted hereafter as FSF

(Field SF) and LSF (Line SF) [2].

The FSF is mainly due to the effect of the atmosphere

and the telescope on the data. In the WFM, without adaptive

optics corrections, it is spatially invariant and slowly varying

with respect to the wavelength. As we focus in this study on

a small part of the datacube around an emission line, the FSF

can be assumed spectrally invariant and is noted F (s).
The LSF models the spectral spreading of MUSE instru-

ment. It is slowly spectrally varying so it is approximately

invariant for the considered part of the datacube. It is spa-

tially varying and is noted Ls(λ).
Both the FSF and the LSF are supposed to be known: the

first one, which depends on the seeing conditions, can be es-

timated from the data of an isolated star, while the second is

deduced from the instrument’s calibration stage.

2.3. Data model

The spectral line L(s, λ) is convolved by the LSF and FSF:

LLF (s, λ) =

∫∫∫
L(s′, λ′) · Ls′(λ

′ − λ) · F (s′ − s)dλ′ds′

which will be noted hereafterLLF (s, λ) = L(θ)∗L∗F with

θ the parameters of the spectral line.

The noise-free data correspond to the addition of this con-

volved spectral line to the sky spectrum (which has been con-

volved by the LSF):

O(s, λ) = LLF (s, λ) + sky(s, λ).

Noise is mainly due to the photon counting process (readout

noise being negligible) and is modelled as spatially and spec-

trally independent Poisson noise. However, due to a large in-

tegration time, it can be approximated as an additive Gaussian

noise n ∼ N (0,Γ(s, λ)), with Γ(s, λ) = O(s, λ). Finally,
the sky spectrum is estimated and subtracted from the data:

D(s, λ) = LLF (s, λ) + n(s, λ).

Note that the noise variance Γ(s, λ) may be very high, since
the noise is partially due to the sky spectrum. It is unknown

in practice but may be approximated by the data (before sky

subtraction). An example of such data is illustrated Fig. 1, for

4 wavelengths around an emission line.

3. EXISTING ESTIMATION METHODS

We focus here on the classical methods used to estimate the

characteristics of spectral lines, without taking into account

the spatial convolution, which will be called hereafter ”esti-

mation methods”. The aim is to estimate the parameters of

the spectral lines θk = [ak, ck, wk] , for all spatial position sk

x x

y

λ = 572.82 nm λ = 573.08 nm

y

λ = 573.47 nm λ = 574.38 nm

Fig. 1. Extracts of a simulated hyperspectral datacube at four

different wavelengths. Contents: galaxy at the centre, other

objects. Integration time: 80 hours. All pictures have the

same inverse color scale.

among {s1 . . .sN}. These classical methods do not account
for the FSF, or equivalently approximate the FSF by a Dirac

delta function F (s) = δ(s), and therefore consider each spa-
tial position sk independently.

3.1. Method of moments (MM)

The method of moments is commonly used by the astrophys-

ical community to estimate spectral line characteristics [3].

First, the flux is estimated as the sum of the pixels’ intensities

along the spectral line. Then, the position and the width are

estimated as the first and second order spectral moments of

the data:

Flux: âk =
∑

i

D(sk, λi)

Position: ĉk =
1

âk

∑

i

λiD(sk, λi)

Width: ŵk =

√
1

âk

∑

i

(λi − ĉk)2D(sk, λi).

For such a method, no assumption of the shape of the

spectral line has to be done. As the LSF is not taken into

account explicitly, the estimated quantities do not correspond

exactly to the characteristics of the spectral line L(sk, λ),
even for an ideal FSF (Dirac). Nevertheless, in this ideal case,

if the LSF is symmetric, the position of the line is not af-

fected by the spectral convolution, so ĉk gives a non-biased

estimator of ck. Furthermore, if both the LSF and the emis-

sion line are assumed to have a Gaussian shape, the line can

be spectrally deconvolved by subtracting to the square of the

estimated width ŵk the variance of the LSF. The main draw-

back of such a method is that it is generally very sensitive to

the noise (note that the noise characteristics are not accounted

for), in particular for the width estimation.
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3.2. Maximum likelihood estimator (ML)

For the noise model of § 2.3, data dk = {D(sk, λi)}i have a

Gaussian distribution. If we noteL(θk)∗Lk the spectral con-

volution of the line of parameters θk with the LSF at spatial

position sk, the likelihood can be written:

p(dk|θk) ∝ G (dk − L(θk) ∗ Lk,Γk)

where G(u,Γ) = exp
(
− 1

2‖u‖2Γ−1

)
, ‖u‖2

Γ−1 = uT
Γ
−1u,

and Γk = diag{Γ(sk, λi)}i. So, the maximum likelihood es-

timator of θk is defined as:

θ̂ML,k = argmin
θk

‖dk − L(θk) ∗ Lk‖2
Γ
−1

k

The criterion to be minimized is not convex and may have lo-

cal minima. So, depending on the algorithm used to compute

the estimate, it can be very sensitive to the initialisation.

4. PROPOSED ESTIMATION METHODS

To improve the spectral line parameters estimation, we pro-

pose to use Monte-Carlo estimation methods, which are ef-

ficient alternatives to optimisation methods, especially when

the criterion has local minima. Indeed, such methods give es-

timates which are theoretically independent from the initiali-

sation. Moreover, such a strategy also gives essential informa-

tion in terms of confidence levels (more precisely variances)

associated to the estimated parameters.

The posterior distribution of the parameters p(θk|dk)
can be derived from the likelihood, through Bayes’ rule

p(θk|dk) = p(dk|θk)p(θk), introducing prior distribution

p(θk) on the parameters. Then, random vectors θk are

generated, building a Markov chain {θ(i)
k }i=1...P , whose

stationary distribution is the posterior distribution p(θk|Dk).
For this purpose, we use a hybrid Gibbs/Metropolis-Hastings

algorithm, which generates random values according to the

conditional distribution of the parameters. Finally, the Poste-

rior Mean (PM) estimator is computed from these samples, as

well as its variance. Each of the ingredients of the proposed

method are described hereafter.

4.1. Prior distributions

We have chosen to introduce weak prior information on

the parameters, so as not to introduce bias in the estima-

tion. The parameters are considered independent p(θk) =
p(ak)p(ck)p(wk), where:
• ak is positive Gaussian of variance ra: ∼ N+(0; ra) with a
spatially constant large value ra:

p(ak) = 2
1√
2πra

exp

(
− 1

2

a2
k

ra

)
1[0;+∞[(ak).

• ck is uniformly distributed on an interval [λ1;λ2] deter-

mined from the data: p(ck) =
1

λ2 − λ1
1[λ1;λ2](ck).

• wk is uniformly distributed on the interval [0;ω] with ω the

maximal width of the line, which can be evaluated from the

data: p(wk) =
1

ω
1[0;ω](wk).

4.2. Conditional distributions

The conditional posterior distributions of the parameters are

deduced from the prior distributions and the likelihood:

• p(ak|ck, wk, dk) ∝ G (ak − µ, ρ)1[0;+∞[(ak),

where µ = ρ f
T
kΓ

−1
k dk and ρ =

ra

1 + rafT
kΓ

−1
k fk

,

with fk = ℓ(ck, wk, λ) ∗ Lk(λ).
• p(ck|ak, wk, dk) ∝ G (dk−L(θk)∗Lk,Γk)1[λ1;λ2](ck).
• p(wk|ak, ck, dk) ∝ G (dk−L(θk)∗Lk,Γk)1[0;ω](wk).

4.3. Hybrid Gibbs/Metropolis-Hastings algorithm

Instead of generating directly random vectors from the joint

posterior distribution p(θk|dk), we propose to use a Gibbs

sampler. Such an algorithm generates random variables from

the conditional posterior distributions given above, for each

individual parameter of θk. Generalizing such an algorithm

for the deconvolution problem will be straightforward.

If the flux parameter can be generated directly from a trun-

cated Gaussian distribution [4], the densities for the position

and width parameters are not easy to sample directly. There-

fore we use a Metropolis-Hastings step with a Gaussian pro-

posal distribution, the variance of which is adjusted to obtain

an optimal acceptance rate [5]. Estimated parameters θ̂PM,k

and corresponding variances are computed from the samples,

the process being performed independently for each sk.

5. DECONVOLUTION METHODS

The main drawback of previous methods is that they do not

take into account the spatial spreading due to the FSF. Thus

the estimated parameters do not correspond to the parameter

of the emission lines (see § 6.2). Therefore we propose to

perform a true 3D deconvolution, estimating jointly the spec-

tral lines parameters θ = {θk}k for every spatial position,

accounting for the 3D PSF (FSF and LSF).

The proposed deconvolutionmethod is a generalisation of

the estimation method proposed in § 4:
• As the noise is spatially independent, the likelihood corre-
sponds to the product of the likelihoods for each spatial posi-

tion and can be noted:

p(D|θ) ∝ G (D − L(θ) ∗L ∗ F ,Γ) ,

where D and Γ collect all the data and their corresponding

variance. Therefore, the joint maximum likelihood (JML) es-

timator of parameters θ corresponds to:

θ̂JML = argmin
θ

‖D−L(θ) ∗L ∗ F ‖2
Γ−1 .
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• The parameters for each spatial position are considered a

priori independent: p(θ) =
∏

k

p(θk).

• Let Uk = D −
∑

j 6=k

ajf jδ(sj) ∗ F be the residual of the

contribution of the spectral lines for each spatial position ex-

cepted position sk. Then, the conditional posterior distribu-

tions have an expression very similar to the estimation case:

− p(ck|θrest, D) ∝ G (Uk−L(θk)∗Lk∗F ,Γ)1[λ1;λ2](ck)
− p(wk|θrest, D) ∝ G (Uk−L(θk)∗Lk∗F ,Γ)1[0;ω](wk)
− p(ak|θrest, D) ∝ G (ak − µ, ρ)1[0;+∞[(ak)

where µ = ρ eT
kΓ

−1Uk and ρ =
ra

1 + raeT
kΓ

−1ek

, with

ek = fkδ(sk) ∗ F .

• As for the proposed estimation method, these conditional

distributions can be used to generate samples from the joint

posterior distribution p(θ|D) using a hybridGibbs/Metropolis-

Hastings algorithm. The joint posterior mean (JPM) esti-

mated parameters θ̂JPM and their corresponding variances are

computed from these samples.

6. SIMULATION RESULTS

6.1. Simulations

We have simulated data according to the models1 of § 2 for
Gaussian FSF and LSF, sampled at MUSE datacube resolu-

tion (∆s = 0.2 asec and ∆λ = 0.13 nm). Note that for

sake of simplicity, we have used 2D simulations, with one

spatial and one spectral dimension instead of 3D (two spa-

tial dimensions). Typical flux, position and width maps were

used for these simulations, displayed Fig. 3 and 4 (with a thick

red line)2. The FSF corresponds to bad seeing conditions, to

emphasize the interest in deconvolution methods. Data were

simulated with two noise levels; the first one, corresponding

to a high SNR, usefull to validate the estimation and decon-

volution methods. The second one, with a low SNR, corre-

sponds to more realistic data. The resulting data are illustrated

Fig. 2.

We used the mean squared errors (MSEs) to quantify the

estimation error. The MM and ML estimates are thresholded

before computing the MSEs, to have a value in the range used

as prior for the PM estimator (λ1 = 5, λ2 = 15 for c and ω =
2.5 for w). MSEs on c and w are computed only for spatial

positions from 8 to 22 as 99.6% of the flux of the galaxy lies

between these positions.

1In fact, the simulated spectral line corresponds to the O-II spectral dou-

blet. But, as both lines are assumed to have same flux and width, and the

distance between them is known, the characteristics of the estimation and

deconvolution problems are not fundamentally modified.
2The authors would like to thanks R. Bacon and the MUSE Consortium

for providing the realistic MUSE simulations used to build the data.

Original spectral line Convolved spectral line

λ

Noisy data for high SNR Noisy data for low SNR

λ

sk sk

Fig. 2. 2D simulated data : 21×30 pixels in spectral (vertical)
and spatial (horizontal) dimensions.

6.2. Estimation results

The ML estimates were computed with the Matlab function

fminsearch, initialized with the results of the MM. PM esti-

mates and it associated variances are computed from P =
50 000 samples of the Markov Chain, after discarding the first

P samples of the chain.

In the case of a high SNR, the MM, ML and PM estima-

tors give very similar results as shown for the estimated pa-

rameters on Fig. 3 and on the MSEs on Tab. 1. The estimated

parameters clearly don’t match with the theoretical values: in

particular the flux and the position appearmore spread and the

width larger than the original ones, which was expected as the

FSF hasn’t been taken into account. In the more realistic case

of low SNR, the results of the MM and ML are significantly

worsened, which is not the case for the PM.

High SNR case Low SNR case

MM ML PM MM ML PM

â 2.46 2.47 2.49 3.48 3.53 3.79

ĉ 0.26 0.22 0.22 0.77 0.51 0.44

ŵ 0.14 0.11 0.11 0.84 0.32 0.087

Table 1. MSE for the estimation results.

6.3. Deconvolution results

As the optimisation algorithm used to compute JML (Mat-

lab function fminsearch) may be sensitive to the initialisation,

we used two initial values: the results of the ML estimation

method and the true parameters. The corresponding results

are denoted respectively JML and JML+ hereafter.

Fig. 4 and Tab. 2 illustrate the deconvolution results ob-

tained by the JML, JML+ and JPM estimators, both in the

high and low SNR cases. If the improvement of the deconvo-

2480



0

10

20

6

8

10

0.5

1

1.5

2

2.5
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Fig. 3. Estimation results: theoretical (red thick line) and

estimated flux, position and width for spatial position sk. First

row: MM (- -) and ML (–) estimates. Second row: PM (–)

estimates +/- posterior standard deviation (−·).

lution methods is obvious on the estimated flux, it is not the

case for the position and width estimated with JML, even in

the high SNR case. This is due to the alternating high and low

values of the estimated position ĉk for neighbouring spatial

positions sk, which effects cancel out after convolution with

the FSF. Note that a different initialisation gives another re-

sult, but even with an ideal initialisation, the results of JML+

are subject to the same alternating phenomenon. The results

of JPM are better than the JML ones, in particular in the low

SNR case. Both the flux and positions are well estimated, the

latter being overestimated for the spatial positions with a very

low flux, which is not physically significant. However, the

width is not correctly retrieved with the JPM in the low SNR

case.

High SNR case Low SNR case

JML JML+ JPM JML JML+ JPM

â 1.93 0.38 0.18 7.92 5.32 2.15

ĉ 1.35 0.89 0.14 2.15 2.20 0.28

ŵ 0.33 0.40 0.052 0.90 1.48 0.18

Table 2. MSE for the deconvolution results.

As a conclusion, the proposed joint posterior mean de-

convolution method improves the results of the classical es-

timation methods, which do not account for the spatial PSF.

Moreover, it gives better results than the joint maximum like-

lihood estimates, even if the latter is initialized with the true

parameters values.
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âk ĉk ŵk
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