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ABSTRACT

This paper describes experiments with speaker verification
using support vector machines (SVMs). Verification from
coded and uncoded speech is analyzed, both in matched and
mismatched conditions. A hybrid SVM-GMM approach is
used, in which SVM classifiers with Kullback—Leibler ker-
nel make verification decisions based on the mean values of
Gaussian mixtures. The most common narrowband codecs
are used, such as G.711, G.729, G.723.1, GSM 06.10, GSM
06.60, and Speex. The Equal Error Rate (EER) is presented
for various numbers of Gaussian components, and for various
testing conditions. Possible reasons for the non-uniform per-
formance degradation in the case of codec mismatch are dis-
cussed. Selected ROC curves are presented. The results are
compared with a similar investigation of a close-set speaker
classification.

Index Terms— speaker verification, speech coding, sup-
port vector machine, speaker recognition, ROC curve

1. INTRODUCTION

A speaker verification system, for example the one used by
a bank for customer authorization, mostly works based on
the transmitted speech signal, i.e., the signal which has been
transcoded by a voice codec. It should therefore work ro-
bustly, regardless of whether the customer is calling from a
land line, a mobile, or an Internet phone. This is why there
is a need to make speaker verification robust not only against
a change of microphone or against the speaker’s inter-session
variability, but also against the various speech codecs used in
voice transmission. We deal with the same problem in speaker
detection, where we aim at finding a speaker in a large corpus
of telephonic (i.e., transcoded) speech.

Support Vector Machines (SVMs) [1] have already been
successfully employed for speaker classification from coded
speech, see [2], where a multi-class SVM classifier was used.
Since the SVM algorithm in its basic form is a binary clas-
sifier, the authors wanted to test SVMs in a speaker verifi-
cation task, which is a binary problem (acceptance/rejection)
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and needs no additional voting mechanism, as is the case for
multi-class problems such as classification.

1.1. SVMs in speaker verification

In speaker recognition, including speaker verification (and de-
tection), SVMs have already been successfully used in nu-
merous studies. In [3], the authors proposed using an SVM
to process supervectors containing the mean values of GMM
Gaussian components. They used the linear Kullback-Leibler
kernel, which for M Gaussian components can be expressed
as

M

K (utt,, utty) = Z (\/EE;%M?)T (\/Ezi‘%uﬁ?) (D

i=1

where A, i, and 3 are the ith Gaussian parameters (weight,
mean values and covariance matrix) of the utterances a and
b. The authors showed ROC curves for a speaker detection
task from the NIST SRE 2005 challenge, where SVMs out-
performed the classical GMM ATNorm approach, requiring
considerably less computational power.

In speaker verification, an SVM speaker model is trained
to find a discriminant hyperplane in the score space between
the correct speaker and a potential impostor. Therefore, un-
like the close-set speaker recognition task, there is a need
to model the impostor. In the literature two such methods
have been described: (i) using a universal background model
(UBM) and using it for each speaker, and (ii) using a set of
speakers (a cohort), which should be selected separately for
each speaker to efficiently cover the impostors’ space. In [4],
these two approaches were even combined, resulting in a de-
crease in the verification error.

In [5], the authors used SVMs with the Fisher kernel and
the LR (likelihood ratio) kernel with spherical normalization.
On the PolyVar speech corpus they achieved up to 33% rela-
tive improvement of speaker verification accuracy compared
to GMM-UBM systems.

1.2. Impact of speech coding on speaker recognition

Several studies have already been conducted on speaker
recognition from coded speech. In the majority of cases, the



researches used speaker recognition based on Gaussian mix-
ture models, where speaker models were adapted, using, e.g.,
the MAP (maximum a posteriori) algorithm, from a univer-
sal background model (GMM-UBM systems) [6]. Usually
two cases are considered: (i) matched conditions: when the
speaker recognition system trained using speech transcoded
with codec X is tested on speech also transcoded with codec
X; (i) mismatched conditions: when the system trained using
speech transcoded with codec X (or not coded at all) is tested
on speech transcoded with codec Y.

So it was for example in [7], where the authors showed
for the NIST 1998 speaker recognition evaluation corpus how
much the recognition accuracy is affected by transcoding us-
ing the GSM 06.10, G.723.1, and G.729 codecs. The authors
reported that the GSM 06.10 codec had the best results both
in matched and mismatched conditions, but G.723.1 proved to
be the worst: Equal Error Rate (EER) rose from 4% to 12%
for female speakers, so the performance degradation was con-
sistent with decreasing perceptual quality.

GSM speech codecs were examined in [8], but only in
matched conditions. The authors showed that both speaker
identification and verification performance is degraded by
these codecs, blaming the low LPC order in these codecs.
Speaker recognition from speech coded with the GSM 06.60,
G.729, G.723.1, or MELP codecs was studied in [9] both in
matched and mismatched conditions. The authors used the
GMM-UBM technique, with gender-dependent UBM mod-
els. They found that the recognition accuracy decreases when
the mismatch between the quality of the training and testing
codecs increases. It was shown that using handset dependent
score normalization (HNORM) improved the results. In var-
ious experiments with the Speex codec in [10], it was shown
that Speex can serve well also for creating speaker models for
testing GSM-encoded speech. In [11], wideband codecs were
examined: WMA, AAC and MP3; some loss in recognition
accuracy was observed without change of the sample rate,
and a significant loss was experienced when the sample rate
was changed.

SVMs were employed for speaker recognition from coded
speech in [2], which presented that the SVM-GMM approach
required a higher number of Gaussian components (M) than
the GMM-UBM approach. It was shown, however, that for
M = 256, an SVM-based classifier yielded much higher ac-
curacy for GSM-transcoded speech than was found in [8] for
GMM-UBM.

1.3. The aims of this study

Following the promising results of SVM-based speaker
recognition in several studies, including the ones for coded
speech, we decided to examine it in the speaker verification
task. The following questions were posed in this study: (i)
how will the SVM algorithm perform for speaker verification
of coded and uncoded speech, compared to the GMM-UBM
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approach, in matched and mismatched conditions? (ii) What
is the difference in performance compared to the classifica-
tion task? (iii) Which codec would be the best for creating
speaker models, which would allow efficient verification
independently of the codec used in testing?

The results will be compared with the experiments on
speaker verification from speech transcoded with the GSM
codecs [8] and the study concerning SVM-based speaker clas-
sification from coded speech described in [2].

2. TESTING METHODOLOGY

2.1. Speech data

The TIMIT speech corpus [12] was used as the database of
recordings. Although it was originally designed for studies
of speech recognition, this corpus has been used as well for a
number of studies on speaker recognition (e.g., [8] and [11]),
as it contains recordings of 630 speakers, which is a relatively
large number. The drawback of the TIMIT corpus is that it
contains only single-session recordings, so the problem of the
speaker’s inter-session variability was not investigated in this
study.

Each of the speakers utters ten sentences, each one lasting
3.2 s on average. The audio material per single speaker is
relatively short (ca. 32 s, in total for training and for testing,
compared, e.g., to 120 s in [10]), which makes the verification
problem an even bigger challenge.

The experiments were run both for uncoded and coded
speech. The uncoded speech was sampled at 16 kHz or 8
kHz, but the coded speech was sampled at 8 kHz only, as
narrowband codecs were tested. The codecs researched were
those which are the most-used lossy codecs in fixed, mobile,
and VoIP telephony: (i) G.711 in A-law option; (i) G.723.1
in 6.4 kbps option; (iii)) GSM 06.10 (known also as GSM
Full-Rate), working with the bitrate 13 kbps; (iv) GSM 06.60
(known also as GSM-Enhanced Full Rate), with 12.2 kbps bi-
trate; (v) G.729, operating at a bitrate of 8 kbps; (vi) Speex,
here working in mode 8, as it showed the best performance in
mismatched conditions in [10].

2.2. Verification procedure

A hybrid SVM-GMM approach was used, in which super-
vectors (SVs) were created by stacking the mean values of
the GMM speaker models (generative part), and the verifica-
tion decision was made by the SVM algorithm with a linear
Kullback-Leibler kernel (discriminative part). The speaker
models were created by adapting the mean values p of the
Gaussian components in a UBM model using the MAP algo-
rithm with a relevance factor RF' = 1.

The speech data was parameterized using 19 MFCC pa-
rameters (plus the Oth one), with a frame length of 30 ms and a
10 ms analysis step. The UBM models were trained using the
GMM EM-ML algorithm, separately for each of the codecs



and for uncoded speech, using 200 speakers. The remaining
430 speakers were used for verification tests, analogously to
[2] and [8].

Speaker SVs were created based upon ca. 16 s of train-
ing speech material. Recordings of five SX TIMIT sentences
of each speaker were concatenated and split into eight equal
parts to create eight SVs per speaker, as this proved to be suc-
cessful in [2]. Speaker SVM verification models were trained
by taking eight SVs of the correct speaker and 200 SVs cre-
ated from the 200 UBM speakers. Hence, the UBM speakers
were treated as a generalized impostor model.

Verification tests were run using single SA or SI TIMIT
sentences, so testing SVs were created for each of these
recordings for all 430 speakers. The SA sentences are
the same for every speaker, this is why they were used in
the testing part only, to preserve text-independence. Each
speaker model was challenged with five attempts of the cor-
rect speaker and five impostor attacks, thus making 2 x 5 x
430 = 4300 verification trials in total. When testing verifi-
cation in matched conditions, the UBM model, training, and
tested SVs were all created from speech transcoded with the
same codec. In experiments with mismatched conditions,
the UBM and training sequences were trained using speech
transcoded with codec X, and tested on SVs created from
speech transcoded with codec Y.

The experiments were run in the Matlab environment us-
ing the LIBSVM [13] and h2m toolboxes [14]. The results
were assessed by counting the number of False Acceptance
(FA) and False Rejection (FR) errors. Based on them, the
False Alarm and Miss probabilities were calculated. The EER
value and ROC data were obtained by changing the decision
level in the SVMs.

3. RESULTS

Verification tests were first run for clean, uncoded speech at
the original sampling frequency (16 kHz), for matched con-
ditions. It turned out that for 16 Gaussian components, the
results are inferior to the ones described in [8], which were
achieved with the GMM-UBM method: the EER yielded
4.05% compared to 1.1% in [8]. When increasing the number
of Gaussians (M) the results got better, reaching 1.12% only
for M = 512, see Fig. 1. Similar tests were performed for
speech transcoded with the GSM 06.10 codec, in matched
conditions as well; here the SVM-based verification proved
better than GMM-UBM already for M = 64, reaching 5.86%
compared to 7.30% in [8]. Generally, for coded speech and
higher values of M, the SVM-based speaker verification sig-
nificantly outperformed the GMM-UBM-based verification
(see Fig.1); for coded speech it was therefore decided to
conduct further experiments with M = 256.

Next, experiments were run for 8 kHz-sampled speech,
both coded and uncoded, in matched and unmatched condi-
tions. The EER results for 49 different verification config-
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Fig. 1. EER results for uncoded speech (fs = 16 kHz) and
GSM 06.10-transcoded speech for various numbers of Gaus-
sian components, compared with the results in [8].

urations (systems trained with seven various speech types,
each of them tested with seven speech types) are presented
in Table 1. The diagonal (highlighted) presents the verifi-
cation results for matched conditions. The best results were
achieved for uncoded speech, speech transcoded with Speex8
and G.711 (with EER equal 2.93%, 3.40% and 3.53%, re-
spectively); G.723.1 and G.729 yielded the worst scores (EER
5.40% and 5.16%, respectively). These results are consistent
with the voice quality offered by these codecs: a similar re-
lationship was observed in [2] and [10]. A ROC curve for
the matching condition is presented in Fig. 2(a). It shows,
among other things, that the ROC characteristics for speech
transcoded with Speex8 and with G.711 almost overlap.

When testing speaker verification in mismatched con-
ditions, the results obviously were worse. However, the
degradation of the verification performance was not uniform.
If the verification system was challenged with high-quality
speech (transcoded with G.711 or Speex8, or uncoded), then
the increase in the EER was not high. Remarkably, a sys-
tem trained with G.723.1 and tested with Speex8-transcoded
speech yielded even better results than in matched condi-
tions. If the verification was based on lower-quality speech
(transcoded with the G.723.1, G.729, or GSM codecs) the
performance varied. Sometimes the increase of EER was
not significant (e.g., for the pair G.723.1/GSM 06.60: it in-
creased by only 0.27% over the matched condition). On the
other hand, some codecs did not complement each other well:
especially the GSM 06.10 codec was “disliked” by the others
— the EER often doubled or almost tripled if they were chal-
lenged with GSM 06.10-transcoded speech. Similar behavior
was observed for the classification task in [2].

Analyzing Table 1 row-wise can help find the most suit-
able codec for creating universal models for speaker verifica-
tion. The average EER values show that Speex8 and G.723.1
seem to be the best candidates. In addition, G.723.1 yielded
the lowest EER variance, which is also visible when analyz-
ing the ROC curves in Fig. 2(d) — they are very close to each
other, unlike those for Speex8 in Fig. 2(c).



Table 1. EER [%] for systems trained (in rows) and tested (in columns) with different codecs. The diagonal (in bold) shows
results for matched conditions.

. . un- GSM GSM Speex
training/testing coded G711 G.723 G.729 06.10 06.60 3 average stddev
uncoded 2.93 3.30 8.93 7.77 8.74 6.33 4.42 6.06 2.15
G.711 3.58 3.53 9.58 8.47 8.51 6.56 4.74 6.43 2.12
G.723.1 5.30 5.77 5.40 7.02 7.44 5.67 5.12 5.96 0.73
G.729 5.86 6.98 8.05 5.16 10.23 5.07 6.23 6.80 1.39
GSM 06.10 6.60 6.47 8.93 10.65 4.70 8.42 6.37 7.45 1.62
GSM 06.60 5.16 6.00 8.09 7.35 9.72 4.42 5.86 6.66 1.48
Speex 8 4.05 4.37 6.84 8.70 6.88 6.14 3.40 5.77 1.57
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Fig. 2. ROC curves for various testing scenarios: (a) matched conditions, and the models trained with (b) uncoded speech, (c)
Speex, (d) G.723.1.
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The ROC curves for the speaker models created with un-
coded speech, Fig. 2(b), show that such a verification sys-
tem would perform well if challenged with G.711 and Speex-
transcoded speech, but it would have a high probability of
errors when tested with the G.723.1, G.729, or GSM 06.10
codecs.

4. CONCLUSIONS

SVM-based speaker verification performs comparably to the
GMM-UBM technique, provided that the number of Gaus-
sians (M) is increased. For the uncoded 16 kHz-sampled
speech, it was necessary to increase M from 16 to 512 to
achieve nearly the same EER of 1.1%. For GSM-coded
speech it was enough to increase M to 64 to get much better
results than the GMM-UBM approach. It is believed that
this is caused by the fact that in the SVM-GMM technique,
we need to create a model of the tested speech in order to
submit it to the SVM classifier, while in the GMM-UBM
technique, the speaker model is challenged directly by the
parameters of the tested speech. Therefore the SVM-based
speaker verification requires more precise speaker modeling.

The classification task [2] required less increase in M:
256 and 32 Gaussians, respectively. This suggests that the
verification task in the scenario used (an equal number of
client and impostor access trials) was more demanding than
the closed-set classification task within a group of 430 speak-
ers.

The problem of a major EER increase in some of the
tested mismatch conditions is probably caused by the fact that
each of the tested lossy codecs is lossy to a different extent. If
speaker models are created with codec X and the client tries
to verify its identity using codec Y, the degradation of accu-
racy will be minimal if the codec Y is either lossy to a low
degree (e.g., it is a waveform codec G.711) or it loses a piece
of information which was already lost by the codec X. Due to
this fact, in our opinion, out of the seven tested types of nar-
rowband speech signals, both coded and uncoded, the speech
transcoded either with Speex in mode 8 or with the G.723.1
codec proved to be the most suitable for creating the most
universal speaker models.

Future work can involve verifying these results in multi-
session conditions, so it will require using another corpus,
e.g., YOHO.
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