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ABSTRACT

Vocal Tract Length Normalization is a widely deployed speaker nor-
malization technique, which compensates for vocal tract length dif-
ferences among speakers by appropriately warping the frequency
axis of the speech signal. In this work, we study the use of this
technique on the time synchronization paradigm. An efficient bilin-
ear frequency warping procedure is proposed, in which the amount
of warping is iteratively optimized in accordance with a criterion
that is directly related to the output of the standard Dynamic Time
Warping algorithm. Subjective listening tests performed on mixed-
gender time-aligned results obtained with a subset of data from the
English EUROM1 Many Talker Set have shown that the proposed
procedure significantly improves the overall speech quality and the
time synchronization accuracy with 85% and 91%, respectively.

Index Terms— Time Synchronization, Vocal Tract Length Nor-
malization, Dynamic Time Warping

1. INTRODUCTION

One prominent problem common to many areas of speech research
and applied speech processing concerns the degradation in over-
all system performance due to the across-speaker variability of the
acoustic speech signal. While the source of this variability stems
from a complex combination of many factors, such as differences in
speaking styles and pronunciation, it is commonly agreed that a ma-
jor part of the variability is due to physiological differences between
speakers, in particular due to differences in their vocal tract length
(VTL) and shape. In one of the simplest physiological models, the
human vocal tract is treated as a uniform tube resonator [1]. Accord-
ing to this model, the resonant or formant frequencies are inversely
proportional to the length of the tube. As a result, early Vocal Tract
Length Normalization (VTLN) schemes tried to neutralize speaker-
specific aspects by linearly warping the frequency axis of the speech
signal. In reality however, the relationship between the VTL and the
formant positions is highly context-dependent and in consequence
not purely linear, which explains the use of more sophisticated warp-
ing functions in later approaches. All these functions have in com-
mon that they depend on only one (or a few) parameter(s) and that
they conserve bandwidth and information in the original spectrum.
Broadly speaking, VTLN approaches can be distinguished by the
shape of the frequency warping function used and by the method by
which the parameter(s) of this function is (are) estimated.
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In recent work [2], we proposed a system for the automatic time
synchronization of two renditions of the same speech utterance, and
we investigated the viability of such a system for the application of
Automatic Dialogue Replacement (ADR), a well-known audio post-
production technique, used to synchronize a revoiced studio record-
ing with the corresponding recording made on the film set. Although
we demonstrated that the system performs well when the two record-
ings have been produced by the same speaker, i.c. the actor, further
experiments using speakers of opposite gender have shown that the
system performance degrades rapidly when moving from speaker-
dependent to speaker-independent time synchronization.
The remainder of this paper is organized as follows: in the next sec-
tion, we shortly review the time synchronization framework. The
main contribution of our work is then outlined in section 3, in which
we study the effectiveness of a VTLN scheme based on a bilinear
frequency warping approach with the aim of improving the across-
speaker robustness of time synchronization. The main novelty of the
proposed method lies in the way the amount of frequency warping
is estimated: while this parameter is typically optimized in the Max-
imum Likelihood (ML) sense within the context of Hidden Markov
Model (HMM) based speech recognition [3], we now devise the op-
timization criterion in the context of a speech synthesis application.
In section 4, we evaluate the proposed method in terms of overall
speech quality and time synchronization accuracy. Finally, in sec-
tion 5, we draw the conclusions from the results.

2. TIME SYNCHRONIZATION FRAMEWORK

Fig. 1 reviews the functional block diagram of our automatic time
synchronization system. The system uses a synthesis-after-analysis
approach to modify the timing structure of a replacement speech ut-
terance (Uy) such that the result (Uz) is precisely synchronized with
the speech utterance that serves as the timing reference (Ux). In the
first step of the analysis, which aims to solve the difficult problem
of precisely inserting new, and deleting or resizing existing non-
speech segments, such as breathing pauses, a dedicated Dynamic
Time Warping (DTW) algorithm is used to identify the correspond-
ing speech segments in both the replacement and reference speech
waveforms. Thereafter, the timing relationship for each pair of
matching speech segments is computed and then processed in such
a way that the time-scale modification of the replacement speech
segments is performed more gradually (smoothing step) while at the
same time the speech rate of the time-scaled result is systematically
controlled in relation to that of the timing reference (post-processing
step). It was found that this approach produces results that are both
natural-sounding and well-synchronized with the timing reference.
Details of the system can be found in [2].
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Fig. 1. Time synchronization framework [2].

3. METHOD

This section presents a detailed description of the procedure that is
used to achieve a more robust speaker-independent time synchro-
nization. The proposed procedure attempts to reduce the variability
in spectral formant peak positions for corresponding speech sounds
produced by different speakers. In order to compensate for this vari-
ability, the acoustic feature vectors of one of the speakers are trans-
formed in order to improve their match with the corresponding fea-
ture vectors of the other speaker1. This is achieved by means of a
spectral frequency warping operation that is controlled by only one
parameter, which we will call the warping factor from now on. In
the work described here, an iterative procedure is used to estimate
the best warping factor for each pair of speech utterances in accor-
dance with an optimization criterion that is directly related to the
output of the DTW algorithm. The following subsection describes
exactly how this is accomplished. Further, in subsection 3.2, we dis-
cuss how the frequency warping is implemented in the DTW feature
extraction front-end. Finally, in subsection 3.3, we shortly address
the convergence properties of the proposed procedure. Throughout
this work, we assume that the reader is acquainted with the concepts
of DTW (A short review can for example be found in [2]).

3.1. Iterative Warping Factor Estimation Procedure

The warping factor estimation procedure can be described math-
ematically as follows. In the DTW analysis of speech utterance
pair u, the samples of the r-th (reference) speech frame of Ux
and the s-th (replacement) speech frame of Uy , obtained by ap-
plying an N -point tapered (Hamming) window to the sampled
and pre-emphasized speech waveform, are denoted by xu,r(n) and
yu,s(n),n= 0 . . . N−1, and the corresponding discrete-time spectra
by Xu,r(eiω), r= 1 . . . R and Yu,s(eiω), s= 1 . . . S, respectively.
Furthermore, let xu,r and yu,s be the corresponding feature vectors
obtained from these spectra, then the utterance pair can be repre-
sented by the pair of vector sequences Xu = {xu,1, xu,2, . . . , xu,R}
and Yu =

{
yu,1, yu,2, . . . , yu,S

}
.

1Without loss of generality, we assume in this work that the transforma-
tion is performed on the acoustic features of the reference speaker.

In the context of frequency warping, we now define the warped spec-
trum Xα

u,r(e
iω)

∆
=Xu,r(e

igα(ω)), in which gα(ω) denotes the ap-
plied frequency warping function with warping factor α. The fea-
ture vectors computed from these spectra can then be represented by
x αu,r and the warped representation of Ux as the sequence of vec-
tors Xαu =

{
x αu,1, x αu,2, . . . , x αu,R

}
. Then, the optimal warping factor

αopt
u , in the DTW sense, for the u-th pair of speech utterances is

obtained from

αopt
u =


arg min

α
Dτ (Xαu ,Yu)

arg min
α

K∑
k=1

wk d(x αu,k, yu,k)
(1)

in which d(x αu,k, yu,k) denotes a local spectral distance, e.g. the
squared Euclidean Distance between Mel Frequency Cepstral Coef-
ficient (MFCC) feature vectors x αu,k and yu,k, extracted from Ux and
Uy at time instants xk and yk, respectively. Further, Dτ (Xαu ,Yu)
represents the global accumulated DTW distance, which is com-
puted as the weighted sum of local spectral distances along the time
warping path τu = 〈(xk, yk)〉,k= 1 . . .K. This warping path is ob-
tained with the standard DTW algorithm, which assumes that the
unbiased Sakoe-Chiba weighting function wk is used [2], and the
vector sequences Xαu and Yu. Since a closed form solution for αopt

u

from Eq. (1) is difficult to obtain, we propose to compute it by means
of an iterative search procedure. Let, for this purpose, α̂(i)

u represent
the i-th estimate of αopt

u , and τ
(i)
u the corresponding time warping

path (of length Ki) obtained with the standard DTW algorithm and

the vector sequences Xα̂
(i)
u
u and Yu, then the i+1-th estimate of αopt

u

is found by minimizing the global accumulated DTW distance along
τ

(i)
u for all possible α within a discrete set of values Ri

α̂(i+1)
u = arg min

α∈Ri

Ki∑
k=1

wk d(xαu,k, yu,k) (2)

As starting condition, we set α̂(0)
u = 0↔ τ

(0)
u (no warping, see sub-

section 3.2), for which it is assumed that the iteration will converge
to α̂(I)

u ≈ αopt
u ↔ τ

(I)
u ≈ τ optu after I steps. We will address the

validity of this assumption in subsection 3.3. Further, the first esti-
mate of the warping factor, α̂(1)

u , is searched over a grid of 51 values
spaced evenly between −0.25 and 0.25. This search grid (R0) was
designed to account for a frequency variation of approximately 30%
at ω=π/2. In the subsequent stages of the iteration, the range of
values within which the warping factor was optimized was systemat-
ically reduced to α̂(i)−0.25+0.05 i ≤ α̂(i+1) ≤ α̂(i)+0.25−0.05 i
for 0 ≤ i ≤ 4, and to α̂(i)−0.05 ≤ α̂(i+1) ≤ α̂(i) +0.05 for i ≥ 5.

3.2. Frequency Warping Implementation

In the literature, several techniques have been proposed to imple-
ment VTLN. The most intuitive method is to resample the speech
waveform in the time domain before front-end processing [4]. Other
approaches have implemented VTLN in the frequency domain, ei-
ther by compressing or expanding the speech signal in the Fourier
domain using spectrum interpolation, or by modifying the width and
spacing of the component filters of the filterbank, used in the MFCC
computation [3]. Yet other approaches are based on the work of Pitz
et al., who proved that VTLN can equally be implemented by means
of a linear transformation in the cepstral domain, provided that the
applied frequency warping function is invertible [5].
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One particular example of such a function is the Bilinear Transform
(BLT), which for the present purpose will be expressed as

Q(z) =
z − α
1− αz (3)

for some real-valued warping factor α. In [6], McDonough has
shown that Q(z) belongs to a class of rational all-pass transforms
(RAPT), which, under suitable analyticity constraints, provide the
means to transform a causal discrete-time sequence x(n) into a
new sequence xα(n), such that their Z-transforms are related by
Xα(z) =X(Q(z)). The transformed sequence is given by

xα(n) =

+∞∑
m=0

q(m)(n) x(m) (4)

in which

q(m)(n) = Z−1 {Qm(z)} =
1

2πi

∮
C+

Qm(z) zn−1dz (5)

for all m≥ 0. The integration must be performed in the region of
convergence (ROC) of Qm(z) along a closed contour C in counter-
clockwise direction. From Eq. (5), it is apparent that q(0)(n) = δ(n),
and the sequences q(m)(n) can be computed recurrently from the
Cauchy product q(m)(n) = q(m−1)(n) ∗ q(1)(n) for all m≥ 2, once
q(1)(n) is known. Provided that |α |< 1, the latter is available from
inspection of the geometric series expansion of Q(z) on the unit cir-
cle z= eiω . In sum, the sequences q(m)(n) can be found from

q(0)(n) = δ(n) (6a)

q(1)(n) =

{
−α n = 0
(1− α2) αn−1 n > 0

(6b)

q(m)(n) =

n∑
k=0

q(m−1)(k) q(1)(n− k) m ≥ 2, n ≥ 0 (6c)

and Eqs. (4),(6) now set forth a procedure to transform a sequence
x(n) into a new sequence xα(n), whose Fourier transform equals
that of the original sequence evaluated on a warped frequency axis
ω̂=∠Q(eiω)

∆
= gα(ω), such thatXα(eiω) = X(eigα(ω)), in which

gα(ω) = ω + 2 arctan
α sinω

1− α cosω
(7)

represents the bilinear frequency warping function. A plot of this
function for 3 different α-values is shown in Fig. 2. From this fig-
ure, we can see that the frequency mapping is inherently non-linear.
For example, for positive values of α, all frequencies of the origi-
nal spectrum, except ω= 0 and ω=π, are downshifted in absolute
terms; as a matter of fact, the frequency range 0<ω< arccosα is
compressed and the frequency range arccosα<ω<π is expanded.
Finally, we remark that, although Eq. (4) involves infinite series, the
sequences are typically of finite length for x(m), and can be trun-
cated for xα(n) when |α |< 1. In our implementation for example,
the reference speech segments xu,r(n) were subject to the transfor-
mation, represented by Eq. (4), before traditional MFCC computa-
tion, usingN terms for both the original and transformed sequences,
corresponding to a frame length of 25ms.

Fig. 2. Illustration of the bilinear frequency warping function gα(ω)
for 3 different values of the warping factor α.

3.3. Analysis of Proposed Iterative Procedure

In this section, we describe an experiment that we performed to bet-
ter understand the properties of the proposed iterative procedure. For
this purpose, we asked one adult male and one adult female speaker
to produce each 2 read versions of 8 text fragments (one excerpt from
a novel, 2 from a journal paper, and 5 from the EUROM1 corpus [7]).
We manually segmented each of these 4 recordings into 37 segments
of continuous speech, and then applied the iterative procedure to the
148 pairs of matching speech segments, each time using the time pat-
tern of the male speech samples as the timing reference. Thereafter,
we counted the obtained warping factors in each of the bins of the
R0 range. This is illustrated in the resulting histogram of Fig. 3 (a):
values of estimated warping factors are displayed along the horizon-
tal axis, and the number of utterance pairs that were assigned to each
given warping factor is plotted on the vertical axis. From the figure,
we can see that all warping factors vary from −0.23 to −0.12 with
66.89% and 89.19% having a value to within one and two percent of
the median (m=−0.18), respectively. These negative warping fac-
tor values are consistent with the fact that, on average, male speak-
ers have a longer VTL and exhibit lower central formant frequencies
than women. As a result, it is reasonable that the proposed procedure
chooses to shift the formants of the male spectra upwards (α< 0) in
order to improve the match with the formants of the corresponding
female spectra.
Fig. 3 (b) shows the distribution of the required number of iteration
steps that are necessary to reach convergence to within one percent
accuracy. From the figure, we can see that for the major part of the
iterations (97.30%) convergence was reached in 2, 3 or 4 steps, and
in precisely half of the cases this occurred after the median value
of 3 steps. At last, we have computed, concurrently with each es-
timated warping factor value α̂(i)

u , i= 1 . . . I , a discrepancy score
D

(i)
u , which reflects the normalized area between the time warping

paths τ (i)
u and τ

(i−1)
u . We then pooled individual scores computed

for different speech utterance pairs per iteration step index, and rep-
resented the average of each cluster as a vertical bar in Fig. 3 (c).
From this figure, we can see that the resulting warping path discrep-
ancy function decreases most rapidly for the lower order iteration
step indices. Assuming that large discrepancy scores correspond to
synthesized results in which large differences in both speech quality
and time synchronization accuracy can be perceived, this suggests
that the lower order iteration steps contribute most to the overall sys-
tem performance improvement.
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(a)

(b) (c)

Fig. 3. (a) Histogram of estimated warping factors; (b) Distribution
of required number of iteration steps necessary to reach convergence
to within one percent; (c) Bar graph of mean normalized warping
path discrepancy in function of the iteration step index.

4. EVALUATION

4.1. Database

We have evaluated the proposed procedure in terms of overall speech
quality and time synchronization accuracy by means of subjective
listening tests using time-aligned results obtained with data from the
English sentence recordings of the EUROM1 “Many Talker Set” [7].
These recordings have been structured into 10 blocks (F0 to F9),
each one of which is composed of 6 renditions of a sequence of 5
sentences that are isolated by pauses. Each of these 6 five-filler-
sentence sequences has been produced by a combination of 6 male
and female adults, all native speakers of their own language. We
remark that both speakers as well as sentence sequences differ across
the 10 blocks, and that there was an equal amount of 30 male and 30
female speakers in total. However, within each block, the number of
male and female speakers was not always evenly balanced.

4.2. Selection of Mixed-Gender Speaker Pairs

A subset of the aforesaid data was selected with the aim of keeping a
reasonable amount of evaluation data, small enough to be viable for
subjective evaluation, but large enough to add sufficient power to the
statistical analysis. Moreover, we ensured that those speech sample
pairs were included for which it could be reasonably anticipated that
VTLN could be most desirable. This was accomplished by means
of the following procedure: we first manually endpointed each of
the 5 sentences in all of the 60 five-filler-sentence sequences, and
then removed non-speech segments (e.g. short breathing pauses), in
so far as they occurred, in all of the 300 resulting speech samples.
Thereafter, we considered within each block all possible combina-
tions of one male and one female speaker and, for each combination,
we applied the proposed procedure to the 5 corresponding speech
sample pairs, each time using the time pattern of the male speech
sample as the timing reference. For each pair of speech samples u,
we then computed (as in subsection 3.3) the discrepancy between
the smoothed initial and converged warping paths (τ̃ (0)

u and τ̃ (I)
u

Time-aligned Smoothed Post-
result DTW Path processing

Baseline (B) τ̃
(0)
u no

Intermediate (I) τ̃
(I)
u no

Proposed (P) τ̃
(I)
u yes

Table 1. Types of time-aligned results. Smoothing window used was
a 500ms tricube window, and the postprocessing parameter was set
equal to 1.1 (see also [2]). Some experimental results can be down-
loaded from http://www.etro.vub.ac.be/research/DSSP/demo/ADR.

in Table 1, respectively). The 5 discrepancy scores for each pair of
speakers were then averaged, and the largest mean score of each
block was then added to a list. Eventually, the 5 largest scores of this
list defined which speaker pairs (and corresponding speech sample
pairs) were kept for the experiment. In order to even the balance of
mixed-gender results in the evaluation phase, we applied a similar
procedure to select another 25 pairs of speech samples, but this time
we used the time pattern of the female speech samples as timing
reference in the iterative procedure.

4.3. Experiment

For each of the 50 selected pairs of speech samples, we used the
Waveform Similarity OverLap-and-Add (WSOLA) algorithm with
the same parameter settings as in [2] to time-align the replacement
speech waveform with the corresponding speech waveform that
served as timing reference. Depending on the warping path that was
used to achieve this, we distinguish 3 types of time-aligned results
(see Table 1). In addition, we created a second set of evaluation
data by mixing each of the 150 time-aligned results with their cor-
responding timing reference. We will refer to these mixed speech
waveforms as BR, IR and PR for the baseline, intermediate and
proposed methods, respectively.

4.4. Subjective Listening Tests

In order to assess and compare the results in terms of perceived over-
all speech quality and time synchronization accuracy, we performed
2 subjective listening tests using a group of 18 test listeners. For
this purpose, the results were assembled in 2 groups of 50 triplets
(X,Y, Z), in which X, Y and Z represent either a single-ended (B,I,P)
or a mixed (BR,IR,PR) result. In both tests, the order of presentation
of the samples in each triplet was randomized with the constraint
that X, Y, and Z represented a result obtained with the baseline, in-
termediate or proposed system in at least 32% of the times in order
to neutralize observator bias effects such as the primacy and recency
effect. For each of the 50 triplets in each test, we asked the test sub-
jects to rate the perceived overall speech quality or respectively time
synchronization accuracy of the corresponding X, Y and Z samples
by assigning scores to their opinions. Each of these scores is a num-
ber in the range from 1 to 5 and has the following meaning: the
overall perceived quality (of the speech sample itself or respectively
its time synchronization accuracy with the reference) was excellent
(5), good (4), fair (3), poor (2), or bad (1).

4.5. Results

Tables 2 and 3 show for both studied aspects the arithmetic means
evaluated from the opinion scores for each and across all speaker
pairs (MOS), as well as the sample standard deviation (s), standard
error of the mean (SEM) and the 95% confidence interval (95%CI).
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Overall Speech Quality
SCx SCy B I P
MP MJ 1.31 3.49 4.20
NC NM 2.31 3.25 3.77
NX MT 1.36 1.95 4.29
NO NY 1.76 3.47 4.10
NG MW 1.09 1.87 3.47
MJ MP 1.60 3.22 4.29
OE NL 1.91 3.64 4.18
NM NC 2.41 4.03 4.34
MT NX 1.41 3.03 4.27
MW NG 1.34 2.71 4.19

MOS 1.65 3.06 4.11
s 0.86 1.18 0.89

SEM 0.03 0.04 0.03
95%CI 1.59...1.71 2.99...3.14 4.05...4.17

∆xy ,∆yz ,∆xz 1.41 1.05 2.46
dxy ,dyz ,dxz 1.36 1.00 2.79
δxy ,δyz ,δxz(%) 85.45 34.31 149.09

F (p) 1408(<0.0001)
pxy ,pyz ,pxz <0.001 <0.001 <0.001

Table 2. Results of statistical analysis with regard to the subjective
evaluation of the overall speech quality of the time-aligned results.
SCx and SCy represent EUROM1 speaker codes. Subscripts x and
y indicate which speaker was considered the reference or respec-
tively replacement speaker in the time alignment procedure.

In addition are given the raw (∆xy ,∆yz ,∆xz) and standardized
differences (dxy ,dyz ,dxz) in overall mean MOS scores, and also
the relative improvement of the different systems over each other
(δxy ,δyz ,δxz). Since the distribution of the MOS scores proved to
be far from Gaussian, we performed, for each of the studied aspects,
the Friedman test followed by Dunn’s post test to verify the statis-
tical significance of the observed differences in mean MOS scores
between the 3 systems. Tables 2 and 3 report the Friedman statistic
(F ) as well as the overall (p) and between-groups (pxy ,pyz ,pxz)
p-values. With regard to the overall speech quality, we can conclude
that there is compelling evidence at the 5% level that the differences
in overall mean MOS scores for the 3 systems are statistically signif-
icant. A similar conclusion can be drawn with regard to the overall
time synchronization accuracy, except for the difference in overall
mean MOS scores between the intermediate and proposed system,
which proved to be statistically less significant (pyz > 0.05).

5. CONCLUSIONS

From the results, we can draw a number of interesting conclusions.
At first, with regard to the overall speech quality of the time-
aligned results, we can conclude that both the VTLN and DTW path
postprocessing procedures significantly improve the results (from
in-between bad and poor over fair to good), and that the contribution
of the former to the overall improvement is more pronounced than
that of the latter. Furthermore, with regard to the overall time syn-
chronization accuracy, the results show that the contribution of the
VTLN procedure to the overall improvement is even slightly more
pronounced than that to the overall speech quality improvement.
However, the post-processing procedure has no additional effect this
time: this is not surprising, as it was specifically designed to make
the time-scaled results sound more natural [2].

Overall Time Synchronization Accuracy
SCx SCy BR IR PR
MP MJ 1.97 4.07 3.53
NC NM 2.35 4.02 3.34
NX MT 1.58 2.62 3.98
NO NY 2.04 4.22 4.15
NG MW 1.28 2.42 2.89
MJ MP 1.96 3.74 3.43
OE NL 2.25 4.16 3.69
NM NC 2.52 4.19 3.90
MT NX 1.41 3.19 4.02
MW NG 1.37 3.04 3.27

MOS 1.87 3.57 3.62
s 0.96 1.17 1.00

SEM 0.03 0.04 0.03
95%CI 1.81...1.94 3.49...3.64 3.55...3.69

∆xy ,∆yz ,∆xz 1.70 0.05 1.75
dxy ,dyz ,dxz 1.58 0.05 1.77
δxy ,δyz ,δxz(%) 90.91 1.40 93.58

F (p) 1067(<0.0001)
pxy ,pyz ,pxz <0.001 >0.05 <0.001

Table 3. Results of statistical analysis with regard to the subjective
evaluation of the overall time synchronization accuracy between the
time-aligned results and their corresponding timing references.

We remark that the large scores for the overall relative improve-
ment in speech quality and time synchronization accuracy (149%
and 94%, respectively) should be considered upper limits that are
valid for this particular data set: in reality, it can be anticipated that
these scores will be smaller when the EUROM1 speech sample pairs
would have been selected at random. Nevertheless, the effectiveness
of the proposed VTLN procedure to the robustness improvement of
speaker-independent time synchronization has been clearly demon-
strated.
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