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ABSTRACT

A novel constraint using shape parameter distribution into the
AAM fitting method is proposed. Active appearance models
(AAMs) are some of the most popular facial models. AAM-
based face tracking delivers accurate alignment results. How-
ever, non-face-like shapes can also be estimated by AAMs,
unlike by the conventional AAM fitting method, which only
minimizes the matching error of the image. This is one of the
causes for face tracking performance degradation in AAMs.
A constraint using the shape parameter distribution is added
in order to solve this problem.

Index Terms— Active appearance models, Inverse com-
positional image alignment, Face tracking

1. INTRODUCTION

In this paper, a novel face shape likelihood (FSL) constraint
is proposed for the conventional fitting algorithm. FSL uses
the likelihood of shape parameter distribution.

Facial feature point detection or tracking has been exten-
sively studied as a basic technology for a variety of tech-
niques, including personal identification and facial expression
estimation. Methods of detecting and tracking facial feature
points can be classified into two categories. The first is a tech-
nique using local features. Weighted vector concentration [1]
using histograms of oriented gradients (HOG) [2] and Cosar’s
method [3] using Gabor features are examples in which lo-
cal features are used. However, methods using local features
detect or track feature points by moving feature points inde-
pendently; therefore, they tend to be unstable for tracking.
The second is a technique using a facial appearance model.
Typical models are 3D morphable models [4] and active ap-
pearance models (AAMs) [5]. The former is a 3D face model
while the latter is a 2D face model. Detection and tracking of
facial feature points can be performed with high stability and
accuracy using these models.

AAMs include shape and appearance models. A shape
model uses shape parameters to represent facial shapes. The
goal of AAM fitting is to estimate the shape parameter fitting
an input facial image. Inverse compositional image alignment
(ICIA) [5] is a typical AAM fitting technique. ICIA uses the
gradient method to estimate the shape parameters that mini-
mize matching errors between the input image and the mean

appearance. Non-face-like shapes can be estimated as there
are no shape parameter constraints in ICIA. In this paper, the
novel FSL constraint, which uses shape parameter distribu-
tion, is proposed.

2. ACTIVE APPEARANCE MODELS

2.1. Model structure

AAMs [5] represent an object’s shape with a shape model. s
is a vector arranged coordinate of N feature points (xi, yi) as
follows,

s = [ x1, y1, x2, y2, · · · , xN , yN ]T (1)

The mean shape, s0, and eigen vector, sj , are calculated by
a principal component analysis (PCA) of the training data,
which are facial image labeled feature points. s is represented
by s0, and shape parameter p = (p1, · · · , pj) is a weighted
sum of sj as follows,

s = s0 +
m∑

j=1

pjsj (2)

Various shapes are generated by changing shape parameter p.
Figure 1 (a) shows examples of the shapes.

Facial appearance is represented by the appearance model.
A(x) is the facial image normalized to the mean shape s0.
The mean appearance, A0(x), and eigen vector, Aj(x),
are calculated using PCA of the normalized training data.
A(x) is represented by A0(x) and appearance parameter
λ = (λ1, · · · , λj) is a weighted sum of Aj(x) as follows,

A(x) = A0(x) +
m∑

j=1

λjAj(x) (3)

The mean appearance, A0(x), is called the template image.
Figure 1 (b) shows an example of A0(x).

2.2. Conventional fitting algorithm

The goal of fitting is to estimate the shape parameter, p, which
fits the input image. ICIA is a typical AAM fitting algorithm
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Fig. 1. Examples of AAMs. (a) Shape model with differ-
ent shape parameters. (b) Template image of the appearance
model.

that minimizes the matching error between the template im-
age and input image as follows,∑

x∈s0

[ I(W (x;p)) − A0(x) ]2 (4)

Here, x = (x, y) is coordinate point which belongs to tem-
plate image space, W (x; p) is a warp function with shape
parameter p, and I(W (x; p)) is a normalized input image. It
is difficult to estimate p directly, and therefore ∆pT , which
is the difference of the shape parameter in template space, is
estimated instead. The error function, EI , is as follows,

EI =
∑
x∈s0

[ I(W (x; p)) − A0(W (x;∆pT )) ]2 (5)

A0(W (x; ∆pT )) is transformed to a linear function of ∆pT

by Taylor expansion around ∆pT = 0. Then, ∆pT , which is
minimized EI , updates p iteratively up to convergence.

3. PROPOSED METHOD

3.1. Problem with ICIA

There are fitting algorithms other than ICIA for estimating
shape parameter p, including Lucas-Kanade image alignment
[5], forwards compositional image alignment [5], and others.
ICIA has more elements that can be calculated in advance, so
its iteration process is faster than the other algorithms. Since
ICIA only minimizes the image matching error, there is no
constraint to shape parameter p. In other words, equation (4)
allows non-face-like shape parameters, provided the equation
is minimized. Figure 2 shows an example of a result for an es-
timated non-face-like shape. The shape parameter is updated
so that it can be seen distinctly from the correct face shape
distribution. In addition, the image fitting result is shown in
Figure 5 (a). Fitting of the next frame will most certainly
fail if a non-face-like shape is estimated once when fitting the
model to the videos. Therefore, it is thought that imposing
a constraint on the shape parameters significantly contributes
to fitting stability In this study, we aimed to improve ICIA by
adding a constraint that uses face shape likelihood.
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Fig. 2. The shape parameter distribution calculated from the
correct shape. p1 and p2 indicate the first and second shape
parameter dimensions, respectively. The line that starts at the
black circle and ends at the triangle represents the ICIA shape
parameter update state. The ICIA fitting result is shown in
Figure 5 (a).

3.2. Conventional constraint : eigen value constraint

Conventionally, a constraint which reduces the norm of the
shape parameter p has been used [6]. This constraint is as
follows,

EE = pT Σ−1p (6)

Here, Σ is the diagonal matrix whose entries are the eigen
values of the shape model. In this paper, it is called the EE

eigen value constraint (EVC). The error function with EVC is
as follows,

E = EI + wEEE (7)

Here, wE is the EVC weight. EVC has the effect of suppress-
ing shape parameter p from receding from around 0. Figure
3 shows the EVC cost contour and the updated state of p by
ICIA with EVC in shape parameter space. In addition, the re-
sulting image is shown in Figure 5 (b). EVC is a very simple
constraint. In Figure 3, the update is successful by chance,
but there is the potential that p is updated away from the dis-
tribution, depending on the matching error of the image, EI .

3.3. Proposed constraint : face shape likelihood

To more precisely represent the correct shape parameter dis-
tribution, the distribution was modeled using the Gaussian
mixture model (GMM). Our proposed constraint is the likeli-
hood of the GMM as follows,

EF = − log
M∑

m=1

wm N ( p | µm, Σm ) (8)

Here, M is the mixture number of the GMM, N (·) is the nor-
mal distribution probability density function, µm and Σm are
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Fig. 3. The EVC contour and the state of the update by ICIA
with EVC. The resulting image is shown in Figure 5 (b).

mean and diagonal covariance matrices respectively, and wm

is the normal distribution weight. EF means the logarithm
of the reciprocal likelihood which indicates how face-like the
shape represented by shape parameter p is. EF is called the
face shape likelihood. The error function to be minimized
with FSL is as follows,

E = EI + wF EF (9)

Here, wF is the FSL weight. The FSL cost contour and the
updated state of p by ICIA with FSL in shape parameter space
are shown in Figure 4. In addition, the resulting image is
shown in Figure 5 (c). The FSL contour better represents the
correct shape parameter distribution than EVC. Therefore, it
can be expected that the result is less likely to deviate from
the distribution.

4. EXPERIMENT

An experiment was conducted to evaluate fitting stability us-
ing ICIA with the proposed FSL constraint. Fitting was per-
formed to test videos and lost frames (frames failing fitting)
were counted.

4.1. Setting

Two types of videos were prepared. The first was a controlled
set, where subjects were instructed to move their faces (CTRL
set) The second set was a conversation scene (CONV set).
Both of sets included 14 persons’ videos (13 male, 1 female).
Each video was shot at 30 fps with a length of around 900
frames (30 s).

An augmented AAM, called a multi-band AAM, that is
robust to illumination variation was used in this experiment.
The multi-band AAM has a gray scale facial image appear-
ance model and two x-axis and y-axis gradient image direc-
tion models. Hence, ICIA error functions include gradient
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Fig. 4. The FSL contour and the state of the update by ICIA
with FSL. The GMM mixture number is 4. The resulting im-
age is shown in Figure 5 (c).

(a)	
 (b)	
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Fig. 5. Fitting result examples: (a) ICIA (b) ICIA+EVC (c)
ICIA+FSL

image EX and EY matching errors. In addition, robust shape
initialization (RSI) was used to perform more stable fittings.
RSI estimates the initial shape using optical flow. The multi-
band AAM and RSI are detailed in paper [7].

The following three fitting methods were compared: (a)
ICIA (basic), (b) ICIA+EVC (conventional), (c) ICIA+FSL
(proposed). Table 1 shows the error function of each method.
The experiment was conducted as the shape parameter dimen-
sions changed from 7 to 30. The weights for each constraint
and the GMM mixture number for FSL were decided by a
preliminary experiment with respect to each shape parame-
ter’s dimension. Each method began with face detection [8],
and the initial shape parameter was then calculated from the
face region. If a lost frame was detected, the face detection
process was restarted.

4.2. Lost frame detection

If even one of the following conditions is met, a lost frame is
detected.

- No face is detected in the frame
- The normalized norm of the shape parameter, p, is
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Table 1. Error function E of each method.
Method Error function E

ICIA EI + wXEX + wY EY

ICIA+EVC EI + wXEX + wY EY + wEEE

ICIA+FSL EI + wXEX + wY EY + wF EF

larger than threshold thn

- The appearance reconstruction error (ARE) is larger
than threshold tha

The normalized norm of p has the same value as EVC. When
the normalized norm of p is large, the shape is considered to
be non-face-like, and hence, a lost frame is deemed to have
occurred. thn is set to 40. ARE is the weighted mean squared
error as follows:

ARE =

√
R(p)∑
x∈s0

1
(10)

R(p) =

∑
x∈s0

A0(x) +
m∑

j=1

λjAj(x) − I(W (x; p))

M(x)

2

(11)

Here, M(x) is the weighted mask image, I(W (x; p)) is the
fitting result image, and A0(x)+

∑m
j=1 λjAj(x) is the image

reconstructed using the appearance model. Examples of these
images are shown in Figure 6. M(x) was used to emphasize
the error on the contour. If ARE is large, it is thought that
the appearance model cannot explain the fitting result well,
and hence, a lost frame is deemed to have occurred. The lost
frame is easily detected as the tha is smaller. In this experi-
ment, tha was changed by two increments from 26 to 30.

4.3. Results

The results are shown in Figures 7-10. The CTRL set result
when tha was fixed as 28 and the dimension of the shape
parameter was changed is shown in Figure 7. The CTRL
set result when the dimension of the shape parameter was
fixed as 20 and tha was changed is shown in Figure 8. Both
ICIA+EVC and ICIA+FSL had better results than basic ICIA,
regardless of the dimension of the shape parameter or tha.
Comparing ICIA+EVC and ICIA+FSL, there was no signif-
icant difference in the result. The CONV set result when
tha was fixed as 28 and the dimension of the shape param-
eter was changed is shown in Figure 9. The CONV set result
when the dimension of the shape parameter was fixed as 20
and tha was changed is shown in Figure 10. Similar to the
CTRL set result, ICIA+EVC and ICIA+FSL had better re-
sults than basic ICIA. Comparing ICIA+EVC and ICIA+FSL,

(a)	
 (b)	
 (c)	
 (d)	


Fig. 6. Examples of images for calculating ARE: (a) fitting
result (b) normalized result image (c) reconstructed image (d)
weighted mask image. Black pixels are 0.0, gray pixels are
0.5, and white pixels are 1.0.

ICIA+FSL performed better than ICIA+EVC when the di-
mension of the shape parameter was greater than 15 (Figure
9), and ICIA+FSL was better regardless of tha (Figure 10).
The CONV set videos had larger facial movements (espe-
cially mouth movements) than those of the CTRL set. There-
fore, the proposed ICIA+FSL method is thought to be robust
against large facial movements.

5. CONCLUSION

A novel FSL constraint was proposed for the typical AAM fit-
ting method, ICIA. Experiments showed that ICIA with FSL
has better fitting stability than ICIA with conventional EVC
constraints, especially for large facial movements.

In the future, we plan to evaluate the fitting accuracy of
the proposed method. FSL represents the correct shape pa-
rameter distribution better than EVC, and hence, it is thought
that ICIA with FSL performs considerably better than ICIA
with EVC.
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Fig. 7. The CTRL set result when tha was fixed as 28 and the
shape parameter dimension was changed.
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Fig. 8. The CTRL set result when the shape parameter dimen-
sion was fixed as 20 and tha was changed.
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Fig. 9. The CONV set result when tha was fixed as 28 the
shape parameter dimension was changed.
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Fig. 10. The CONV set result when the shape parameter di-
mension was fixed as 20 and tha was changed.
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