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ABSTRACT

We propose a collaborative, energy efficient method for dif-

fusive source localization in wireless sensor networks. The

algorithm is based on distributed and iterative maximum-

likelihood (ML) estimation, which is very sensitive to ini-

tialization. As a part of the proposed method we present

an approach for obtaining a “good enough” initial value for

the ML recursion based on infinite time approximation and

semidefinite programming. We also present an approach for

determining the sensor node that initiates the estimation pro-

cess. To improve the convergence rate of the algorithm, we

consider the case where selected nodes collaborate with their

neighbors. Simulation results are used to characterize the

performance and energy efficiency of the algorithm. We also

illustrate estimation accuracy/energy consumption trade-off

by varying the communication radius of sensor nodes.

Index Terms— Diffusive source localization, distributed

estimation, wireless sensor networks.

1. INTRODUCTION

Wireless sensor networks (WSN) have found application in

various fields due to their collaborative sensing power, adapt-

ability, low cost and rapid deployment [1]. Application areas

are diverse and include, among others, environmental moni-

toring, pollution control and homeland security. A common

task in the above-mentioned applications is the localization

of a source of emissions (e.g., a source of pollution) from

measurements of concentrations of its diffusive field taken at

several locations. A standard approach for determining the

location of a diffusive source involves transmitting all mea-

surements from all sensor nodes (SNs) to a central location

where processing takes place [2]. Although the source loca-

tion thus computed is based on all available information, this
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e a Tecnologia (FCT) through projects PEst-OE/EEI/LA0009/2011,

PTDC/EEA-CRO/104243/2008, and a PhD grant from the Carnegie Mel-

lon—Portugal program.

approach has several disadvantages, especially prominent in

large scale networks: abundant (and costly) communication,

large processing power required at the central node, and in-

creased vulnerability of the network to central node failure. In

order to decrease the communication cost of estimation, a dis-

tributed algorithm for diffusive source localization proposed

in [3] combines distributed ML estimation with information-

based sensor node selection. In [4], to preserve energy re-

sources, distributed detection and estimation of a diffusive

source are performed in two stages and only local estimates

are transmitted to the central location.

We propose a new, energy-efficient collaborative approach for

diffusive source localization. A ML estimate of the source

location is obtained through the distributed Gauss-Newton

(GN) optimization method as in [3], but our approach addi-

tionally includes: a method for selection of the SN that ini-

tiates the estimation process, a method for obtaining a better

starting point for the recursion, neighborhood based collabo-

ration and addition of line-search method in local iterations.

The estimate is updated recursively, with each recursion per-

formed by a selected group of neighboring SNs.

In the next section the measurement model and the corre-

sponding distributed ML estimation problem are discussed.

Algorithm overview is given in Section 3.2. Section 4 con-

tains simulation results and discussion, while conclusions are

given in Section 5.

2. DISTRIBUTED ML ESTIMATION

A continuous diffusive point source, located at position θ,

unknown to the sensors, starts emitting at time t0. Each node

i, located at position ri, measures concentration c (ri, tj)
at time instants tj , j = 1, . . . , N . To model airborne dif-

fusion above the ground, we assume the environment is a

semi-infinite medium with impermeable boundary, where the

ground represents the boundary [2]. Then the concentration

of the substance at a position ri at time tj is given as
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c (ri, tj) =
µ

2πκ‖ri − θ‖
erfc

(

‖ri − θ‖

2
√

κ (tj − t0)

)

, (1)

where µ is the release rate of substance from the source and κ
is the medium diffusivity. The statistical model for measure-

ments yij for each node i at time instant tj becomes

yij = aij (θ) + eij ,

where aij = c (ri, tj) + b, eij is the SN’s Gaussian mea-

surement noise, independent from SN to SN and correlated in

time, and b is the bias, which models the SN’s response to the

presence of a foreign substance. The bias can be estimated

prior to localization, by averaging the measurements when

there is no source present. Now, putting together all the mea-

surements of sensor node i, a vector form of the measurement

model is obtained

yi = ai(θ) + ei, ei ∼ N (0,Σi) , i = 1, . . .M. (2)

The maximum-likelihood estimate (MLE) for model (2) cor-

responds to the nonlinear least-squares estimate

θ̂ = argmin
θ

{

M
∑

i=1

(yi − ai(θ))
T
Σ−1

i (yi − ai(θ))

}

.

(3)

Due to the nonlinear dependence on θ, a closed-form expres-

sion for the MLE cannot be found, and the estimate must be

obtained through an iterative approach, such as the Gauss-

Newton method. The location of the diffusive source can

be obtained iteratively through the distributed Gauss-Newton

method

θ̂i = θ̂i−1 + Γ−1

i JT
i (θ̂i−1)Σ

−1

i

(

yi − ai(θ̂i−1)
)

Γi = Γi−1 + JT
i (θ̂i−1)Σ

−1

i Ji(θ̂i−1), (4)

where Γ0 = 0 and

Ji(θ) =
∂ai(θ)

∂θT

is the N ×P Jacobian matrix, where P represents the dimen-

sion of θ [3]. Each iteration i of the distributed GN algo-

rithm updates the estimate θ̂i−1 to θ̂i and requires the values

from the previous iteration: θ̂i−1 and Γi−1 and the locally

known values yi, ai and Σi. This means that the process of

sequentially updating the estimate of the source location can

be distributed among the SNs and only the values θ̂i−1 and

Γi−1 need to be passed from SN to SN. In terms of energy

consumption, communication is far more costly than compu-

tation, so the update (4) can be modified by allowing multiple

local iterations, starting with φ0 = θ̂i−1 and Υ0 = Γi−1

φj = φj−1 +Υ−1

j JT
i (φj−1)Σ

−1

i (yi − ai(φj−1))

Υj = Υj−1 + JT
i (φj−1)Σ

−1

i Ji(φj−1), j = 1, 2, . . .

Therefore, one SN repeats the update step multiple times, but

each time using the same measurements. After this recursion

converges, the values φj and Υj become the new estimates θ̂i

and Γi [3].

The performance of the centralized GN method is improved

when line search is performed to ensure that there is sufficient

decrease of the cost function in each iteration [5]. Similarly,

we modify the recursions of distributed GN (4) by placing a

weight αi on the update at each iteration i. This weight αi

is calculated through standard backtracking line search, such

that sufficient improvement in the local cost function at each

iteration i is achieved [5]. The resulting update equation has

the following form

θ̂i = θ̂i−1 + αiΓ
−1

i JT
i (θ̂i−1)Σ

−1

i

(

yi − ai(θ̂i−1)
)

.

Although this increases the computation load of each itera-

tion, overall the algorithm becomes more energy efficient, as

each iteration improves the cost function more, requiring less

total number of iterations, and consequently, the total number

of costly transmission between the nodes is decreased.

3. ALGORITHM OVERVIEW

The distributed algorithm for diffusive source localization can

be summarized in the following steps:

i. A node is selected to start the algorithm through Neyman-

Pearson detection.

ii. Initial estimate is obtained by the starting node as a solu-

tion of SDP optimization program.

iii. Local update (4) is performed by the starting node to de-

rive a new estimate of the source position.

iv. The quality of the updated estimate is evaluated to decide

whether the algorithm should terminate or proceed with

the next step.

v. Another node is selected to continue the recursion start-

ing from step iii.

3.1. Starting node and initial estimate

Each SN has a clock that ticks at the times of a rate µ Pois-

son process. Once the clock of a SN ticks, it becomes a

selected SN and performs a Neyman-Pearson (NP) detection

test. Based only on its own measurements, it decides which

one of the two models is more likely, one where the source

is located at some relatively small distance from the SN, and

the other where it is further away. If the SN detects that it is

”close enough” to the source, it queries for measurements its

neighboring nodes, i.e., those located within its communica-

tion range, and calculates the initial estimate. Even though

energy is spent in querying and gathering the measurements
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from the neighborhood, the initial estimate is based on more

information, when compared with using only the SN’s own

measurements. This in turn results in fewer iterations of the

algorithm and estimation remains energy efficient. If, on the

other hand, a SN concludes, based on the NP test, that it has

low signal to noise ratio and is far away from the source, it

does nothing. In this way, SNs are chosen such that the whole

area is monitored uniformly and only informative enough

SNs initiate estimation.

Once a node is chosen to start the estimation process, it needs

to obtain an initial estimate. The function which is minimized

in order to obtain the MLE in (3) is highly non-convex in the

source coordinates. The performance of GN heavily depends

on the value with which the recursion (4) is initialized. If

the initial value is not “close enough” to the true position of

the source, the estimate may drift further away from the true

value with each new iteration, even though more and more

measurements are used to calculate the estimate.

We propose a method for initialization motivated by ap-

proaches used in localization of wireless radio sources based

on received signal strength (RSS) [6]. If the concentra-

tion is measured for a long time, such that tj − t0 ≫

‖ri − θ‖2/ (4κ), the measurement model (1) takes on a

simplified form, as the value of the complementary error

function erfc becomes approximately one [2]

yij =
µ

2πκ‖ri − θ‖
+ b+ eij . (5)

Using the infinite time approximation model (5), we can ob-

tain a crude estimate of the source position as the solution of

the following optimization problem

θ̂0 = argmin
θ̂0,α

∑

i,j

| (yij − b)
2‖ri − θ̂0‖

2

− α|, (6)

where α = (µ/(2πκ))
2
. However, in practical scenarios

where the location of the source needs to be estimated as soon

as the source is detected, the time when the concentration is

measured is not large enough to satisfy the infinite time ap-

proximation. To compensate for the approximation in our

model in this case, we treat α as an additional optimization

variable, even if the release rate µ and medium diffusivity κ
are both known. In this way, deviations from the model (5)

due to finite time are partly captured by variable α, still al-

lowing this model simplification to be used. The cost func-

tion in (6) is not convex, but the problem can be relaxed to a

semidefinite program (SDP) by introducing an auxiliary vari-

able y such that y = θTθ [6]. After relaxing the equality to

inequality constraint y ≥ θTθ, the problem becomes an SDP

minimize
∑

i,j tij
θ, α, tij , y
subject to −tij ≤ (yij − b)2

(

y − 2rT
i θ + ‖ri‖

2
)

− α ≤ tij

y ≥ θ
T
θ.

(7)

3.2. Sensor node collaboration

Once an initial value is obtained by solving the SDP (7), the

starting node performs the first iteration of (4), using its own

measurements and those from its neighbors, and obtains θ̂1.

This value, together with the value Γ1, needs to be passed on

to another SN, so that the estimate can be further updated. To

improve the estimate faster and consume less energy, the start-

ing node needs to select an informative SN. Decision which

SN is the most informative one cannot be based on explicit

knowledge of the measurements residing at each SN, as that

would require transmission of all the measurements.

As a measure of the informativeness of the node, the trace

or determinant of the Fisher information matrix (FIM) can

be used. The FIM is the inverse of the Cramér-Rao bound

(CRB), the lower bound on the variance of any unbiased es-

timator. The FIM is calculated by averaging over all possi-

ble measurements, thus it does not require knowledge of their

particular values. Additional incentive to use the FIM in the

selection criterion comes from the fact that it can be calcu-

lated without increasing neither the number of communica-

tions nor the computational complexity of the distributed GN

algorithm [3]. As measurements from different sensors are

independent, the FIM can be updated recursively as

Fi(θ) = Fi−1(θ) + JT
i (θ)Σ−1

i Ji(θ) (8)

where Fi(θ) is the FIM of nonlinear parameter θ after incor-

porating measurements {y1, . . . , yi}. Let node i be the SN

that was selected as the most informative SN after i − 1 iter-

ations of the algorithm. For node i to calculate the updated

FIM, based on its own measurements, it needs to know the

previous value, Fi−1(θ). However, this is the value of Γi−1

that is already passed on to node i. Node i would also need to

know the true value of θ to evaluate (8), but instead it uses the

currently available estimate θ̂i as an approximation of (8).

As the communication cost also needs to be taken into consid-

eration when choosing the most informative SN, only a sub-

set of SNs is considered in the selection process. The energy

spent communicating depends on the number of nodes trans-

mitting and receiving. By constraining the next selected node

to be a neighbor of the current node, the communication cost

is kept at one transmission and one reception. Using the trace

of the approximate FIM as the information measure, node i
selects the best node i+ 1 as [3]

i+ 1 = argmax
l∈S

Trace
{

JT
l (θ̂i)Σ

−1

l Jl(θ̂i)
}

,

where S is the set of all the neighbors of current node i. The

trace of the CRB approximation from equation (8) is also

used as termination criterium, to determine after each recur-

sion whether another SN should be selected to additionally

improve the estimate, or if the algorithm should terminate.

Once a node is selected as the most informative node, it

queries its neighbors for their measurements and computes
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the new estimate using all the available measurements. The

motivation for this neighborhood-based collaboration is again

the increase in estimation accuracy, with the acceptable trade-

off in increased energy consumption. With this collaboration,

the proposed approach differs from typical distributed meth-

ods where SNs only process their own measurements. In our

approach, estimate θ̂i is calculated using the measurements

of node i and its neighbors, one of which is node i+ 1 itself.

In most practical WSN implementations, where nodes are

randomly distributed over an area which is to be monitored,

SNs have overlapping neighborhoods, meaning nodes i and

i+ 1 might have common neighbors. To avoid transmissions

of redundant information, only those neighboring nodes that

have not been queried by node i respond to the query of node

i+1 for measurements. Each iteration involves one transmis-

sion of previous estimates, one query for measurements and

transmissions from the neighbors responding to the query, so

the total transmission cost scales linearly with the number of

iterations. Denoting with davg the average number of neigh-

bors of a SN, with p the probability that two neighbors of

one SN are neighbors themselves, which corresponds to the

overall clustering coefficient of the network, and with Ck the

expected number of transmissions over k iterations, we have

Ck = (davg(1− p) + 2) k + constant. (9)

The constant reflects the fact that in the first iteration, unlike

in the subsequent ones, the transmissions include one query

from the starting node and responses from all the neighbors.

4. SIMULATION RESULTS

To evaluate the performance and energy consumption of the

proposed approach for distributed diffusive source localiza-

tion, a simulation study was performed. A sensor network

with 100 nodes is set up to have measurements of the form

(2). The source and SNs are placed uniformly at random in

a square area 100m × 100m. The communication radius is

set at 15 m, each SN has at least one neighbor and the result-

ing network is connected. Each SN makes 10 measurements,

with sampling interval of 10s, starting 100s after the source

became active. The parameters are set to b =10−5 g/m3, σ =
6× 10−6 g/m3, µ = 1g/s, κ = 20m2/s and t0 = 0 s. Using

NP detection, SNs test if they are less than 25m away from

the source, with probability of false alarm set to 0.1. For each

simulation, we record the final root mean-squared estimation

error (RMSE) and the total number of transmissions incurred

during the estimation process. As the communication cost

dominates over all other costs for SN, the number of trans-

missions gives us a metric to evaluate the energy consump-

tion of the algorithm. To show the algorithm’s performance

for different scenarios in which the source could be located

anywhere within the monitored area, we run 500 simulations,

each with different source and SNs placement and noise re-

alizations. For the same topologies and noise realization we
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Fig. 1: Performance and energy consumption of the proposed

algorithm

also simulate the algorithm presented in [3]. Since this algo-

rithm does not incorporate a method for initialization, we use

the center of the monitored area as the initial estimate for the

source position.

Figure 1a shows that in more than 65% of the simulations,

for our aproach, the estimated source location was at most 1m

away from the true position of the source. In comparison, Fig-

ure 2a shows that for the algorithm proposed in [3] this per-

centage is 45. Moreover, the percentage of simulations where

RMSE was larger than 10m for our algorithm is less than 5%,

whereas for the algorithm of [3] it is around 30%. To get this

improvement in accuracy, our approach incurs higher num-

ber of transmissions, as SNs collaborate with their neighbors

for each iteration of the distributed GN algorithm. However,

as seen from Figures 1b and 2b, this increase in the number

of transmissions is slight. In less than 5% of the simulations

the number of transmission was higher than 100, which is the

number of transmissions which would be incurred by any cen-

tralized approach where all 100 nodes need to transmit their

measurements to the central location.

Next, we explore the effect of the communication radius on

the performance and energy consumption of the algorithm.

For the same source and SN placements and noise realiza-

tion, simulations were repeated, but with the communication

radius increased to 21 m. This results in the average number

of neighbors almost doubling, from 6 to 11.6, which mod-
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Fig. 2: Performance and energy consumption of the algorithm proposed in [3]
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Fig. 3: The effect of increased communication radius on the proposed algorithm

els networks with denser SN deployments. Figure 3a now

shows increased estimation accuracy, while Figure 3b shows

increased slope of the seemingly linear trend that represents

how the number of transmissions varies with the number of

iterations of the algorithm, modeled by (9). Higher radius

increases the rate at which the number of transmissions in-

creases with iteration number, but this increased energy con-

sumption results in smaller RMSE. Hence, varying the den-

sity of SNs placement produces a tradeoff between estimation

accuracy and energy consumption.

5. CONCLUSIONS

We presented a method for collaborative localization of a dif-

fusive source, where a maximum likelihood estimate is it-

eratively calculated across groups of neighboring nodes. A

method for obtaining the initial value for the recursive esti-

mation was presented, as well as the method for selection of

an informative node to start the estimation. Simulation results

illustrated that the proposed approach gives higher estimation

accuracy than a similar published approach with only a slight

increase in energy consumption. Also, we analyzed the trade-

off in estimation accuracy and energy cost that occurs when

the communication radius of the sensor nodes varies.
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