
A FRAMEWORK FOR FINGERPRINT-BASED DETECTION
OF REPEATING OBJECTS IN MULTIMEDIA STREAMS

Sébastien Fenet1 , Manuel Moussallam1, Yves Grenier1, Gaël Richard1 and Laurent Daudet2

1Institut Mines-Telecom - Telecom ParisTech 2Institut Langevin - ESPCI ParisTech
CNRS/LTCI - UMR 5141 Paris Diderot Univ. - UMR 7587

ABSTRACT

We present an original framework for the detection of re-
peating objects in multimedia streams. This framework is
designed so that it can work with any fingerprint model. A
fingerprint is extracted for each incoming frame of the multi-
media stream. The framework then manages this fingerprint
so that if one similar frame comes later in the stream, it will
be identified as a repetition. The framework has been tested
with two distinct fingerprint models on simulated and ’real-
world’ data. The results show that the framework performs
well with both presented models and that it is suitable for in-
dustrial use-cases.

Index Terms— Fingerprint, repeating objects, indexing,
framework

1. INTRODUCTION

Multimedia streams often contain repetitive data (see [1]).
Depending on the considered medium, repeated objects can
be entire programs, songs, advertisements or jingles. Let
us note that the repeated objects might however be distorted
from one version to the other (different volume, different
equalization, addition of noise, ...). For numerous reasons,
it is interesting to automatically detect these repetitions.
Applications include compression, automatic annotation of
repeating objects, segmentation and data mining.

As some authors have pointed out [2], it is relevant to use
the notion of fingerprint for fast detection of a repetition. A
fingerprint in signal processing can be viewed as a compact
representation of a signal excerpt. This representation is de-
signed so that two similar signals should have the same finger-
print. When it is queried with an unknown signal, the chal-
lenge for a fingerprinting system is to perform an efficient
search. Indeed, it has to compare the unknown fingerprint
with a reference database that usually contains thousands of
them. Hence, the powerful summary and indexing capabil-
ities that are required for a fingerprint system suit well the

This work was achieved as part of the Quaero Programme, funded by
OSEO, French State agency for innovation.

LD is on a joint position between Univ. Paris Diderot and Institut Uni-
versitaire de France

repeating objects detection problem.
Although methods have been proposed [2, 1, 3], each

comes as a specific combination of a detection method and a
fingerprint. In this work, we present a general framework that
allows the use of any fingerprint extraction system for the de-
tection of repeating objects. The only requirement is that the
fingerprint extraction system outputs a set of time-localized
keys for any frame of signal. This is the case for most finger-
print systems. They usually use this set of keys in an indexing
scheme for fast detection. For instance, Wang’s fingerprint
system [4] (also known as Shazam’s system) extracts time-
localized pairs of peaks in the spectrogram and uses them
as database keys. Haitsma’s [5] (known as Philip’s system)
extracts one binary feature every 10ms that summarizes the
spectral content. The authors call these features ’hashes’ and
use them as keys in a ’look-up table’. In spite of the general
applicability of the framework, we have restricted our exper-
iments to audio use-cases. However, one should note that
indexing tasks on multimedia signals (e.g. video) can often
be achieved by working on the sole audio component [6].

In the first section, we describe the framework and all its
components. In the second section, we provide two examples
of fingerprints that have been integrated in the framework.
Finally, we test these configurations in two distinct experi-
ments. The first experiment is meant to accurately evaluate
the performance of the systems. The second one is based on
a ’real-world’ use-case.

2. DESCRIPTION OF THE FRAMEWORK

2.1. General architecture

We describe here the general flow of the framework, given
in Figure 1. The stream is framed and then linearly pro-
cessed. Each frame undergoes a fingerprint extraction. From
here, the system forks. One branch is dedicated to analyz-
ing the fingerprint (in practical terms, looking for matches
in the past), the other is dedicated to storing the fingerprint
in the database containing the past fingerprints. In the anal-
ysis branch, the fingerprint is matched against the database
containing the previous frames’ fingerprints. Based on this
matching result combined with the matching results of previ-

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012 - ISSN 2076-1465 1464

StorageAnalysis

Stream

Framing

Fingerprint

Update
FIFO

Hashing
& storingFusion

Temporal
integration

Vote

Results

frame

{keys, times}{keys, times}

SFCV

MFCM

FIFO stack

detection

Fig. 1. Framework architecture

ous frames, a repetition detection decision is taken. In case of
a detected repetition, the ’storage branch’ is updated so that it
will not store repeated frames in the database. In the storage
branch, the frame’s fingerprint is pushed into a FIFO (’First In
First Out’) buffer. This buffer delays subsequent storage pro-
cessing for this frame. As the current frame fingerprint enters
the buffer, the last fingerprint of the FIFO buffer is pushed
into the database. Though, this latter will be written only if it
has not been detected as part of a repeating segment.

The different building blocks of this general framework
are further described below.

2.2. Framing and fingerprinting

The input stream is sliced in non-overlapping analysis frames
fn (n ∈ N) of length La. A typical value for La is 5s. For a
given analysis frame, the fingerprint module outputs a set of
features along with their dates of occurrence. We call these
extracted features keys. Formally, we define K the set of keys
extracted in fn. Let Ok(fn) be the number of occurrences of
the key k in fn. We then define tk(fn) = {tik(fn)}i=1..Ok(fn)

the set of times of occurrence of the key k in the frame fn.
The output of the fingerprint module is {(k, tk(fn))}∀k∈K.

The database contains all the keys that have been extracted
in the past stream with their times of occurrence in the stream.
As it is meant to represent the past of the stream, we use the
notation f−1 to refer to the database. Consequently, a key k
appears Ok(f−1) times in the database at times of occurrence
{tik(f−1)}i=1..Ok(f−1). When querying the database with key
k, we get in output {tik(f−1)}i=1..Ok(f−1). Our implementa-
tion uses the database engine ”Berkeley DB” set to its ”Hash
Table” mode.

2.3. Analysis

The analysis starts with the fusion step. It aims at finding
the closest match to the current analysis frame in the stream.
The main idea is that if the current frame is the repetition of
a previous section of the stream, its keys should all be stored
in the database. Furthermore, all the keys extracted from the
analysis frame should be retrieved in the past with the same
delay. We then adopt the following methodology to find the
best candidate in the past.

We compute the set of differences{
{tik(fn)− tjk(f−1)}∀(i,j)∈J1;Ok(fn)K×J1;Ok(f−1)K

}
∀k∈K

We store these time differences in a histogram. The highest
peak in the histogram gives the best candidate delay for a rep-
etition.

Let us note that this methodology ensures the retrieval of
the best candidate. Though, it does not require that all keys
are preserved from one version to the other. It only requires
that the majority of the keys are preserved. This makes the
method robust to distortions that would corrupt part of the
keys between the two versions. In order to bring even more
robustness to the system, we output the M best candidate de-
lays.

The work presented in [7] underlines the fact that the per-
formance of a fingerprint system is much higher when issuing
detections based on a vote mechanism involving several suc-
cessive matching results rather than making a frame-by-frame
decision. This idea is also exploited in the work from [8]. Our
framework thus stores the matching results of several succes-
sive analysis frames before making a detection decision. The
fusion step outputs a vector ofM best candidates (that we call
Single Frame Candidates Vector - SFCV) that is integrated in
aH×M matrix that contains theH (for horizon) last SFCVs.
We call this matrix the Multiple Frames Candidates Matrix -
MFCM.

The last step of the analysis is a majority vote on the
MFCM. Previous works suggest the following vote mecha-
nism. For a given detection threshold θ, letMn be the MFCM
after integrating the matching results of frame fn. Let C be
the set of candidate delays that appear in Mn and h be a func-
tion that counts the number of occurrences of a candidate in
the MFCM. Let δ be a function that is defined by:

1465

δ(x, y) =

{
x if y > θ
∅ otherwise

The vote function is then defined by:

v(Mn) = δ(argmax
c∈C

{h(c)},max
c∈C
{h(c)})

However, this vote model may generate some instability
when dealing with objects that contain an inherent repetitive
structure. For example, let us imagine that the database con-
tains one song with two similar choruses. As a consequence,
when processing an analysis frame belonging to a chorus of
the same song, the two choruses in the database will be can-
didates in the MFCM. Besides, their number of occurrences
in the MFCM will be very close. The result is that, when
processing the successive analysis frames of a chorus, the
detections issued by the vote algorithm may look like that:
chorus1-chorus2-chorus1-chorus1-chorus2...

This, of course, is not desirable, since we would like our
algorithm to consider that the successive analysis frames all
belong to the same chorus. Ideally, we would like the al-
gorithm to detect chorus1 when processing the first analy-
sis frames containing a chorus and chorus2 later on in the
stream.

In order to achieve this goal, we modify the preceding
vote model so that it becomes auto-regressive. The autore-
gressive aspect is obtained by favoring the delay that best cor-
responds to the preceding vote result. This ensures a certain
continuity in the algorithm detections. So, if the start of the
song has been detected, and when reaching the chorus, the
algorithm will naturally tend to select the first chorus of the
song in the database. Formally it consists of replacing func-
tion h in the vote by h̃, which is defined by:

h̃(c) =

{
h(c) + β if v(Mn−1) = c
h(c) otherwise

In our implementation, β = 1.

2.4. Storage

One of the principles of the framework is to store the finger-
prints of the analysis frames that have been processed in a
database. However, we do not wish to store in this database
the fingerprints of the frames that are detected as repetitions.
There are two reasons for that. First, it would be a waste of
space. Second, when matching a third fingerprint that would
be alike, we would obtain two good candidates instead of one.
That would uselessly jam the matching process.

As we have seen, the algorithm requires the matching re-
sults of H analysis frames before being able to make a de-
cision. This is why we store in a temporary FIFO buffer the
fingerprints of the processed analysis frames. This buffer con-
tains B > H processed fingerprints. If further processing
outputs a repetition detection for frame fn, its fingerprint in

Fig. 2. Example of output visualization.

the FIFO buffer is labeled so that it will not be written in the
database.

The FIFO buffer also has a screening function. Indeed,
the repetitions that occur before B frames are not detected
(since the corresponding fingerprints have not been added to
the database). Depending on the use case, this can be useful
to prevent over-segmentation. For instance, when segmenting
a radio broadcast, one would usually want repeating segments
that correspond to whole songs. Though, if there is no screen-
ing and if the songs contain repetitive choruses, the algorithm
might annotate the songs in several repeating bits (the cho-
ruses) and unrepeated bits (the verses). By setting B to a
larger value than the length of the song, we can prevent the
system from detecting repetitions within the song.

2.5. Results

The framework outputs a decision for each analysis frame.
It is either considered as a repetition of a previous frame, or
as a first occurrence. A graphical illustration of the result is
given in Figure 2. The origin point is the experiment starting
date. Points on the diagonal indicate frames detected as first
occurrences. Points outside of the diagonal indicate repeated
frames. They are plotted with respect to their first occurrence
dates.

3. DESCRIPTION OF THE FINGERPRINTS

3.1. A CQT-based fingerprint

The first fingerprint we use is fully described in [7]. In short,
the methodology consists of using a 2-dimensional peak-
peaking in the Constant-Q-Transform (CQT) spectrogram of
each analysis frame. The extracted peaks are then grouped
in pairs. Each pair is encoded in a form that makes it robust
to common audio-distortions. These encoded pairs are used
as keys. Their time localizations are given by the times of
occurrence of the first peaks in the pairs.

1466

3.2. A sparse decomposition-based fingerprint

The fingerprint presented above is based on a peak picking
mechanism in the time frequency domain. Alternatively one
can build a fingerprint based on a sparse decomposition of
the signal in a redundant dictionary. Let x be a framed sig-
nal ∈ CN and Φ be a dictionary of elementary waveforms
φk ∈ CN called atoms. We denote x̂m an m-term approxi-
mant of x in Φ, that is to say a linear combination of m wave-
forms: x̂m =

∑m−1
i=0 αiφi. There are many different ways of

building such approximant. A fast one is to iteratively select
the φi according to an energetic criterion:

φi = argmax
φ∈Φ

|〈x− x̂i−1, φ〉|

Algorithms based on this greedy paradigm are called Match-
ing Pursuits (MP) following the work of Mallat et al [9].

Sparse decompositions have initially been proposed for
compression purposes. Indeed, in a variety of multimedia
contexts, wavelet dictionaries (e.g. for images) and Fourier-
based transforms (e.g. MDCT for audio) have enabled a fair
amount of dimensionality reduction. The idea of exploiting
sparse decompositions for fingerprinting has already been
proposed (e.g. in [10]).

An m-term approximant x̂m can efficiently be used as a
fingerprint if: 1) its dimension is much lower than that of x 2)
two different signals would yield significantly different fin-
gerprints and 3) the fingerprints exhibit some robustness to
mild distortions. Most MP-like algorithms are only tailored
for the first of these properties. However, in a fingerprint con-
text, we are not interested in minimizing a reconstruction er-
ror, but in maximizing a discriminating power. Therefore, two
options can be considered: either build a fingerprint from an
existing m-term approximant or modify the decomposition
algorithm so as to only select elements that will favor good
fingerprint properties in x̂m.

In this work we have implemented the second approach,
and the following fingerprint construction is performed. We
have used a multiscale MDCT dictionary and a plain MP al-
gorithm with the additional property that atom selection in the
time frequency neighborhood of previously selected atoms is
discouraged. The selection criterion at iteration i becomes:

φi = argmax
φ∈Φ

λ(φ,ΦI).|〈x−
i−1∑
j=0

αjφj , φ〉|

where ΦI is the set of previously selected atoms and λ(φ,ΦI)
is a binary penalty term set to zero if any previously selected
atom is in the time-frequency neighborhood of φ.

For a given analysis frame fn, an approximant f̂mn is com-
puted and the set of keys used by the fingerprinting system is
simply the set of indexes of the m atoms chosen in the dic-
tionary Φ. By limiting the decomposition to a small number
m of iterations, the dimensionality can be greatly reduced.
However, the fingerprint discriminative power increases with
the number of atoms selected in the decomposition.

CQT-Peaks MP-150
Precision (%) 95.1 94.5

Recall (%) 97.8 91.5
F-measure (%) 96.5 93.0

CPU Time - Fingerprint (s) 0.12 0.33
CPU Time - Total (s) 0.20 0.40

Memory (MBytes) 9.3 2.4

Table 1. Frame by frame detection performances of the pro-
posed framework with two different fingerprint mechanisms
on 2 hours of synthetic redundant audio stream.

4. EXPERIMENTS AND COMPARISONS

4.1. Frame by frame evaluation

This task consists of determining for each incoming analysis
frame whether it is a repetition of a previous frame. If so, the
exact first occurrence in the stream is retrieved. A synthetic
stream is built as a concatenation of 140 audio excerpts ran-
domly taken from a pop song database1. Each excerpt lasts
30 seconds, 100 of them occur twice in the stream and the 40
remaining are not repeated. The total duration of the stream
is thus 2 hours. Analysis frames are 5 seconds long, the com-
plete dataset therefore consists of 1440 frames, 600 of which
are exact repetitions of previous frames. The framework is
evaluated with both presented fingerprints: the CQT-based
fingerprint (labeled CQT-Peaks) and the MP-based fingerprint
with a dictionary of 3 MDCT scales and stopped after 150 it-
erations (labeled MP-150). The two systems are compared
in terms of precision, recall and F-measure. Additionally, we
compare for each analysis frame the average time needed to
compute its fingerprint and the total processing time (mea-
sured on the same Dual-Core CPU at 3.16GHz). Finally, we
compare the size of the databases.

Table 1 summarizes the obtained results. The framework
reaches a good level of precision with both fingerprints. The
recall with the CQT-based fingerprints is better than when us-
ing the MP atom indexes. However, it is also more memory
consuming. The MP-based fingerprints are smaller, but less
robust as the recall shows. The CQT-based fingerprints are
faster to compute but the matching process roughly requires
the same amount of time for both methods. The results con-
firm the relevance of the proposed architecture as a generic
repetition detection framework.

4.2. Real-world evaluation

In [11], the authors underline the importance of evaluating
fingerprinting systems on real-world (i.e. coming from real
broadcasts) data. We here follow their framework applied to

1http://quaero.org

1467

Fingerprint Detected rep. / Total nb False Alarms
CQT-Peaks 191 / 191 (=100%) 0

MP-150 178 / 191 (=93.2%) 1

Table 2. Repeating objects detection scores for a real-world
radio broadcast

a 24-hours long radio broadcast for the evaluation of our sys-
tem.

It is virtually impossible to get a frame-by-frame repeti-
tion annotation on a real broadcast. On the other hand, the use
of the annotations provided within Quaero allows a detection-
based evaluation. The annotations provide for each broad-
cast song in the 24-hours stream the identifier of the song, its
broadcast time and duration. We extract from the annotations
a repeat list. It contains, for each song that is broadcast for
the second time or more, its time of broadcast, its duration
and the song identifier.

We have set the vote parameters so that the system only
outputs long scale repetitions (H = 9, θ = 6). With these, no
repetition shorter than 30s should be detected.

Our evaluation dataset contains numerous short repeating
objects that are not annotated (advertisements, jingles, ...).
A fair evaluation can only be performed on the music titles
broadcasts. Therefore, we limit the evaluation to repeating
segments that are longer than 90s. This matches the set of
broadcast songs, for which we do have the annotations.

The evaluation is then defined as follows. For each repeti-
tion detected by the algorithm, we check that it does actually
correspond to one entry of the repeat list (meaning the detec-
tion time is within the bounds of one repeated song and the
algorithm points to a previous occurrence of the song). If one
repetition is detected and does not correspond to any entry in
the repeat list, we count one false alarm.

The results are given in table 2. Although both algorithms
have performed well, the CQT fingerprints makes no error
in this task. The MP-based method misses a few songs and
has output one false alarm on the 24 hours broadcast. Let us
note that avoiding false alarms in this task is far less challeng-
ing than in the previous experiment since we only consider
long scale repetitions. This second evaluation shows that the
framework is suitable for industrial applications and that it
does actually fit real-world use-cases.

5. CONCLUSION

In this work we have presented a framework for the detection
of repeating objects in multimedia streams. A remarkable fea-
ture of this architecture is that it can handle any time-based
fingerprint. We have applied this framework to two distinct
audio fingerprints and evaluated its performance. The evalu-
ation has shown that the system performs well in both cases.
More interestingly, this shows that the framework can be used

as a test-bed for drawing comparisons between fingerprints in
this specific use-case. Our evaluation includes a real-world
experiment that shows that the framework is suitable for the
detection of repeating objects in an industrial context.

In the future, it would be interesting to compare this ap-
proach with a ”standard” fingerprint algorithm. Usual finger-
printing systems indeed rely on a prior static database that
contains all the items that can be found in the analyzed mul-
timedia streams. Our system builds its database adaptively as
repeating objects occur in the stream. A final open question
is whether this system can compete with traditional systems
on a typical fingerprint use-case such as the broadcast moni-
toring described in [11].

6. REFERENCES

[1] C. Herley, “Argos: automatically extracting repeating
objects from multimedia streams,” IEEE Transactions
on Multimedia, vol. 8, no. 1, pp. 115–129, 2006.

[2] C.J.C. Burges, D.Plastina, J.C. Platt, E. Renshaw, and
H.S. Malvar, “Using audio fingerprinting for duplicate
detection and thumbnail generation,” in ICASSP, 2005.

[3] J. Ogle and D. Ellis, “Fingerprinting to identify repeated
sound events in long-duration personal audio record-
ings,” in ICASSP, 2007.

[4] A. Wang, “An Industrial-strength Audio Search Algo-
rithm,” in ISMIR, 2003.

[5] J. Haitsma, T. Kalker, and J. Oostveen, “Robust audio
hashing for content identification,” in CBMI, 2001.

[6] C. Cotton and D. Ellis, “Audio Fingerprinting to Iden-
tify Multiple Videos of an Event,” in ICASSP, 2010.

[7] S. Fenet, G. Richard, and Y. Grenier, “A Scalable Audio
Fingerprint Method with Robustness to Pitch-Shifting,”
in ISMIR, 2011.

[8] M. Ramona and G. Peeters, “Audio Identification based
on Spectral Modeling of Bark-bands Energy and Syn-
chronization through Onset Detection,” in ICASSP,
2011.

[9] S. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,” Transactions on Signal Pro-
cessing, vol. 41, no. 12, pp. 3397–3415, 1993.

[10] M. Covell and S. Baluja, “Known-audio detection using
waveprint: Spectrogram fingerprinting by wavelet hash-
ing,” in ICASSP, 2007.

[11] M. Ramona, S. Fenet, R. Blouet, H. Bredin, T. Fillon,
and G. Peeters, “A Public Audio Identification Evalu-
ation Framework for Broadcast Monitoring,” Applied
Artificial Intelligence: An International Journal, vol. 1-
2, no. 26, pp. 119–136, 2012.

1468

