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ABSTRACT
Blind channel estimation has been studied in various types
of communication systems since it has a better bandwidth
efficiency than training-based counterpart. In communica-
tion systems employed with cyclic prefixes (CP), subspace-
based (SS) methods are among the most popular categories
of blind channel estimation schemes. Existing SS methods,
however, either require a large amount of received data or
possess a high computational complexity. In this paper, a
new algorithm for blind channel estimation in CP systems that
require few received blocks with a reasonable complexity is
proposed. The idea is based on combing advantages from
two previously reported SS methods, namely, remodulation
and repeated use of each received block. The combination
of the two separate ideas turns out to be superior to each of
them alone in many aspects. Simulation results not only con-
firms the capability of the proposed method to work properly
with very few received blocks, but also show that it outper-
forms all previously reported methods. An extension of the
proposed algorithm to MIMO case is promising.

Index Terms— Blind channel estimation; subspace-
based; cyclic prefix; repetition index; remodulation

1. INTRODUCTION

Blind or semi-blind channel estimation has been studied in
many modern communication systems due to its advantage to
save bandwidth efficiency. Subspace-based (SS) methods be-
long to one of the most popular categories of blind channel
estimation algorithms because they do not require additional
constraints on transmitted signals such as finite-alphabet or
constant modulus conditions and can be directly applied with-
out much modification of transmitter structures. However, SS
methods have some well-known drawbacks, such as require-
ment of knowledge of exact channel order, requirement of a
large amount of received data, and a higher computational
complexity than training-based channel estimators.

In recent years, research efforts of blind channel estima-
tion methods have greatly switched to block transmission sys-
tems with guard intervals [1], such as orthogonal frequency
division multiplexing (OFDM) systems [2, 3]. These stud-
ies have shown that many aforementioned drawbacks of SS
methods, when applied in block transmission systems, are
greatly improved or even resolved. For example, in block
transmission systems employing zero-padding (ZP) [1] and
those using cyclic prefixes (CP) [2], SS methods are no longer

sensitive to the problem of channel order overestimation as
long as the channel order is upper bounded by the length of
guard interval. In addition, while SS methods are usually ex-
pected to require a large amount of received data in order to
obtain accurate second-order statistics, efforts in [3–5] have
shown that the number of received blocks required for SS
methods can be greatly reduced by using each received block
repeatedly.

Among all blind channel estimation algorithms for redun-
dant block transmission systems, the methods for ZP sys-
tems usually deal with a relatively simple matrix equations.
However, these methods are not directly applicable to most
of the currently popular systems such as CP-based OFDM
systems. Existing methods for CP systems, on the contrary,
usually have a much higher computational complexity and re-
quires a larger amount of received data than their counter-
parts for ZP systems. Recently, a new subspace method for
CP systems based on remodulation of received blocks is pro-
posed [6] which yields to a matrix equation as simple as that
in a ZP system. The method has a much better computational
complexity than those in [2, 3] while having a rather satis-
factory channel estimation performance. However, it still is
not able to perform channel estimation when the number of
received blocks is limited.

In this paper, we propose a method that combines ideas
of remodulation and repetition of received blocks. Numerical
results show that the proposed method not only is able to per-
form satisfactory channel estimation with a limited amount of
received data, but also outperforms all existing methods with
the same amount of received data. Furthermore, it possesses
a fairly good computational complexity among all existing
methods, just slightly greater than [6]. The proposed method
is easily extended to the case of multiple-input-multiple-
output (MIMO) scenario. Due to page length and for discus-
sion simplicity, we focus only on single-input-single-output
(SISO) systems in this presentation. .

The rest of the paper is organized as follows. Section 2
gives the problem formulation and briefly reviews existing
subspace-based methods for channel estimation in CP sys-
tems. Section 3 presents the proposed method and Section
4 contains the numerical results to compare the performances
of all methods. Conclusions are given in Section 5.

1.1. Notations

Boldfaced lower case letters represent column vectors. Bold-
faced upper case letters and calligraphic upper case letters
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Fig. 1. System model for a SISO cyclic prefix block transmission system.

are reserved for matrices. Superscripts ∗, T , and † as in a∗,
AT , and A† denote the conjugate, transpose, and transpose-
conjugate operations, respectively. All the vectors and matri-
ces in this paper are complex-valued. The matrix WM repre-
sents the M×M normalized DFT matrix whose kl-th entry is
e−j2π(k−1)(l−1)/M/

√
M . IM is the M ×M identity matrix,

and 0m×n is the m × n zero matrix. For any m × 1 vector
v = [ v1 v2 · · · vm ]

T and any positive integer n, we
use Tn(v) to denote the (m+n−1)×n full-banded Toeplitz
matrix

Tn(v) =



v1 0 · · · 0

v2 v1
. . .

...
... v2

. . . 0

vm
...

. . . v1
0 vm v2
...

. . . . . .
...

0 · · · 0 vm


. (1)

2. SYSTEM MODELS AND PROBLEM
FORMULATION

2.1. Problem Formulation

Figure 1 depicts a typical communication systems using
cyclic prefix(CP). The source vector s(n)is first precoded by
an M × M invertible matrix R, resulting in precoded data
uM (n). In particular, for OFDM or multi-carrier (MC) sys-
tems, R = W†

M is the normalized IDFT matrix; for single-
carrier cyclic prefix (SC-CP) systems, R is chosen as IM . A
cyclic prefix of length L, taking from the last L elements of
uM (n), is defined as ucp(n) = [ 0L×(M−L) IL ]uM (n).
We assume L + 1 < M . The cyclic prefix is appended to
uM (n), forming a vector u(n) =

[
ucp(n)

TuM (n)T
]T

whose length is M + L. The vector u(n), after parallel-
to-serial conversion, is sent over the channel H(z), which
is assumed to be an FIR channel with a maximum order L,
i.e., H(z) =

∑L
k=0 hkz

−k. We define h as the (L + 1) × 1

column vector [ h0 h1 · · · hL ]
T . The received sym-

bols y(n) are corrupted by an additive white complex Gaus-

sian noise e(n) and are blocked into (M + L) × 1 vectors
y(n). We assume perfect block synchronization between the
transmitter and receiver. Also let e(n) denote the blocked
version of the noise e(n). Denote ycp(n) as the first L
entries and yM (n) as the last M entries of y(n) so that
y(n) =

[
ycp(n)

T yM (n)T
]T

. It can be shown that

yM (n) = HciruM (n) + eM (n) (2)

where Hcir is an M × M circulant matrix whose first
column is [ h0 · · · hL 0 · · · 0 ]

T and eM (n) =
[ 0 IM ] e(n). The L × 1 vector ycp(n) contains inter-
block interference (IBI) and can be expressed as

ycp(n) = Hlucp(n) + Huucp(n− 1) + ecp(n) (3)

where Hl is an L×L lower triangular matrix whose first col-
umn is [ h0 · · · hL−1 ]

T , Hu is an L×L upper triangular
matrix whose first row is [ hL · · · h1 ]

T , and ecp(n) =
[ IL 0 ] e(n) is the noise component. We use the entire
content of y(n) =

[
ycp(n)

T yM (n)T
]T in the formula-

tion of the blind channel estimation problem.
The blind channel estimation problem in CP systems can

be stated as follows. Given J received blocks y(n), n =
0, 1, ..., J − 1, how do we estimate the channel coefficients
h0, h1, ..., hL up to a scalar ambiguity?

2.2. Review of Existing Subspace-based Methods

One of the major difficulties for SS blind channel estimators
in CP systems over ZP systems is the interblock interference
(IBI) present in received CP ycp(n). The nth received block,
y(n), depends not only on the nth transmitted block uM (n),
but also on the CP part of the previous block ucp(n − 1). It
is therefore not possible to use y(n) alone in the subspace
method since the signal space already occupies the whole ob-
servation space whose dimension is M + L. One needs to
come up with either a method that has a larger observation
space or one that has a smaller number of unknown param-
eters. In [2], a composite block ȳ(n) composed of contents
from two consecutive blocks y(n− 1) and y(n) defined as

ȳ(n) =
[

yM (n− 1)T ycp(n)
T yM (n)T

]T (4)

is used which has a length of 2M +L. The observation space
is 2M + L, strictly larger than its signal space 2M , therefore
making subspace method possible. In [3], a generalization
of the method in [2] was proposed by repeated use of each
composite block. A parameter called repetition index Q is
defined to indicate the number of columns each composite
block can generate. It has an observation space whose dimen-
sion is 2M +L+Q− 1, strictly larger than the dimension of
its signal space, 2M +Q− 1.

In [6], a different approach to formulate the signal-noise
separation called remodulation is proposed. Instead of con-
catenating contents from two consecutive received blocks
which results in a long vector, the remoduation method uses
the difference of contents from two consecutive blocks, de-
fined as

yRM (n) = y(n)−
ï

yM (n− 1)
ycp(n)

ò
. (5)
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The remodulated received block can be shown to be written
as

yRM (n) = TM (h) (u′M (n)− uM (n− 1)) + noise (6)

where u′M (n) is a permutation of the nth data block uM (n).
The remodulated block has a length M + L, equal to each
cyclic-prefixed received block. Compared to the composite
received block used in [2, 3], the remodulation method in-
volves a smaller matrix (roughly half in size) and has a rel-
atively small computation complexity. However, it still re-
quires a large number of received blocks and has a limited
applicability when the amount of received data is small.

3. PROPOSED METHOD

In this section, we propose our method for blind channel esti-
mation in CP systems. The main idea is to repeatedly use each
remodulation block mentioned in Eq. (5). In fact, from Eq.
(6) we observe that the transfer function between the remodu-
ated received block yRM (n) and the remodulated data block
d(n) , u′M (n)−uM (n−1) is a full-banded Toeplitz matrix
composed of channel coefficients, which has an exactly same
form to that appearing in a blind channel estimation problem
for ZP systems [1]. We can therefore take advantage of what
has been known in blind channel estimation for ZP systems.
Starting from Eq. (6), The following equation can be verified
(see, for example, [5]):

TQ (yRM (n)) = TM+Q−1 (h) TQ (d(n)) + noise

where Q is any positive integer and d(n) is the nth remod-
ulated block. The parameter Q is called the repetition in-
dex as each remodulated block d(n) is repeatedly used Q
times. Suppose J received blocks y(n), n = 0, 1, ..., J − 1
are available at the receiver and we can generate J − 1 re-
modulated blocks yRM (n), n = 0, ..., J − 2 as in Eq. (5).
For each of these remoduated blocks yRM (n), we first form
a Q-column Toeplitz matrix TQ (yRM (n)). Then we con-
catenate all of these J − 1 Toeplitz matrices and construct the
(M + L+Q− 1)× (J − 1)Q matrix

YRM,Q , [ TQ (yRM (0)) · · · TQ (yRM (J − 2)) ] .
(7)

It is readily verified that [5]

YRM,Q = TM+Q−1 (h)DQ + noise

where

DQ , [ TQ (d(0)) TQ (d(1)) · · · TQ (d(J − 2)) ]
(8)

is a (M + Q − 1) × (J − 1)Q matrix containing a repeated
form of remodulated data blocks.

We first assume the noise is absent. The column space
of YRM,Q will be equal to that of TM+Q−1 (h) as long as
the matrix DQ has full row rank M + Q − 1. The condi-
tions on which DQ has full row rank are discussed later. In
this case, the left null space of YRM,Q is equal to the left null
space of TM+Q−1 (h) and therefore the channel coefficients h
can be blindly identified (with a scalar ambiguity) using only

YRM,Q. In presence of noise, the noise space of YRM,Q can
be found by choosing the left singular vectors of YRM,Q cor-
responding to the smallest singular values. Specifically, sup-
pose the singular value decomposition (SVD) of the YRM,Q

is expressed as

YRM,Q = [ Us Un ]

ï
Σs

Σn 0

ò ï
V†s
V†n

ò
in which the size of Σs is (M + Q − 1) × (M + Q − 1)
and that of Σn is L×L. The matrix Σn contains the smallest
singular values and the corresponding left singular vectors are
the columns of the matrix Un. When the noise is small, the
columns of Un are approximately orthogonal to the columns
of TM+Q−1 (h):

||U†nTM+Q−1 (h) ||2F ≈ 0.

Denote the (i, j)-entry of U†n as uij ,we use contents of the
kth column of Un and form the (M + Q − 1) × (L + 1)
Hankel matrix

Uk ,


uk1 uk2 · · · uk,L+1

uk2 uk3 · · · uk,L+2
...

uk,M+Q−1 uk2 · · · uk,M+Q+L−1

 (9)

for any k, 1 ≤ k ≤ L. Then we have Ukh ≈ 0. Construct

U =
[
UT1 UT2 · · · UTL

]T
. (10)

Then the channel vector h can be estimated up to a complex
scalar ambiguity by choosing the vector h which minimizes
the norm of Uh:

ĥ = arg min
||h||=1

||Uh||2 = arg min
||h||=1

h†(U†U)h. (11)

Recall that the above discussions are based on the assump-
tion that the (M +Q− 1)× (J − 1)Q matrix DQ in Eq. (8)
has full row rank. This implies that the number of its columns
must be greater than or equal to the number of its rows, i.e.,
(J − 1)Q ≥ M + Q − 1. Therefore, a necessary (but not
sufficient) condition for the proposed algorithm to work ap-
propriately is that

J ≥ M − 1

Q
+ 2.

This inequality essentially sets up a lower bound for the num-
ber of received blocks (J) required for the proposed algo-
rithm. Note that the receiver has the freedom to choose any
positive integer as the repetition index Q. When a larger Q is
chosen, the required number of received blocks is lower.

3.1. Summary of Algorithm

The proposed algorithm can be summarized as follows.

1) Given block size M , CP length L, and the J available re-
ceived blocks y(n), n = 0, 1, ..., J − 1, choose the repeti-
tion index Q such that

Q ≥ M − 1

J − 2
.
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Method Feature Number of re-
ceived blocks

Complexity Conditions when M =
32

Muquet et al. 2002 [2] Composite blocks J ≥ 2M + 1 O((2M + L)3) J ≥ 65
Su and Vaidyanathan
2007 [3]

Composite blocks
and repetition

J ≥ 2M−1
Q + 2 O((2M + L+Q− 1)3) J ≥ 23 when Q = 3

Gao et al. 2008 [6]
(SISO case)

Remodulation J ≥M + 1 O((M + L)3) J ≥ 23

Proposed method Remodulation and
repetition

J ≥ M−1
Q + 2 O((M + L+Q− 1)3) J ≥ 13 when Q = 3

Table 1. Comparison of subspace-based blind channel estimation algorithms for CP systems.

2) Perform remodulation on y(n) according to Eq. (5) and
construct the (M+L+Q−1)×(J−1)Q matrix YRM,Q

as defined in Eq. (7).

3) Perform singular value decomposition (SVD) on YRM,Q

so that

YRM,Q = [ Us Un ]

ï
Σs 0

Σn 0

ò ï
V†s
V†n

ò
where the diagonal entries of Σn are the L smallest singu-
lar values of YRM,Q.

4) Use contents of Un and construct the (M + Q − 1)L ×
(L+ 1) matrix U as in Eqs. (9)(10).

5) Let ĥ be the eigenvector of UU† corresponding to the
smallest eigenvalue. And ĥ would be the estimated chan-
nel vector within a scalar ambiguity.

3.2. Complexity Analysis

Just like other SS methods, the main computational load of
the proposed algorithm comes from the SVD operation on the
YRM,Q matrix. Since we only need to calculate left singular
vectors of YRM,Q, the complexity depends only on the num-
ber of rows of YRM,Q and can be expressed asO((M +Q−
1)3). When Q is chosen as a small integer, the complexity is
just slightly greater than that in [6] but significantly smaller
than other methods based on composite blocks [2, 3]. A full
comparison of complexity of all algorithms is listed in Table
1. In addition, Table 1 also summarizes the lower bound of
the numbers of received blocks of different methods. We ob-
serve that the proposed method is applicable with the smallest
amount of received data among all existing SS blind channel
estimation algorithms.

4. NUMERICAL RESULTS

In this section, we conduct Monte Carlo simulations to
demonstrate the performance of the proposed method and
compare it with those of previously reported methods. We
assume perfect block synchronization in all simulations. The
block size M is chosen as 32 and the length of cyclic prefix
is L = 8. We test our methods in static channel environ-
ments. The Rayleigh fading channel of order L = 8 is used.
Source symbols are chosen from QPSK constellation and the
precoder is chosen as R = IM (i.e., in SC-CP systems).

Let Nch be the number of statistically independent channel
realizations generated for a simulation and NS be the number
of independent sets of data sources and noise generated for
each channel realization. The normalized channel estimation
mean square error, denoted as Ech, is used as the figure of
merit and is defined as

Ech =
1

Nch

[
Nch∑
k=1

1

NS

NS∑
l=1

min
c∈C

||cĥk,l − hk||2

||hk||2

]

where hk is the kth channel realization and ĥk,l is the es-
timate of hk for the lth Monte Carlo trial (up to a complex
scalar ambiguity). In all simulation plots, we use Nch = 200
and NS = 100.

Figure 2 shows the simulation result when the number
of received blocks is 65 (i.e., slightly more than twice of
the data block size M ). This is the smallest number for the
method in [2] to work properly (see remarks in Table 1).
Both the methods in [3] and in [6] have a much better per-
formance. Yet, the proposed method has an even improved
performance compared to all previously reported methods in
all SNR ranges. An approximately 2dB gain is observed if we
compare the performance of proposed method with Q = 3 to
that of method in [3] with the same repetition index.

Figure 3 demonstrates the unique capability of the pro-
posed method to work with a small amount of received data.
Here the number of received blocks is set to J = 16, just
half the block size. We observe that all previously reported
methods do not work properly while the channel estimation
error of the proposed method with Q = 3 decreases as SNR
increases. This is consistent with the conditions listed in the
last column in Table 1.

Finally, in Figure 4 we compare all above methods with
different number of received blocks. The number of received
blocks is ranging from J = 16 to J = 256 in this simulation
plot and the SNR level is set to 20 dB. We still observe that the
proposed method with Q = 2 and Q = 3 all outperforms all
other methods, especially when J is small. To obtain a chan-
nel estimation error at the level of 10−3, the proposed method
needs only around J = 64 (twice the block size) received
blocks while most of others need more than 100. When the
amount of received data increases, the performance gap be-
tween the proposed method and previously reported methods
gradually decreases. The advantage of the proposed method
with a limited available amount of received data is clearly
shown. In addition, compared to methods in [2, 3], the com-
putational complexity is around only one fifth in this case.
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Fig. 2. Normalized MSE of channel estimation for static channel with the
QPSK constellation in SC-CP systems comparing with the repetition method.

Fig. 3. Normalized MSE of channel estimation for static channel with
the QPSK constellation in SC-CP systems with a small number of received
blocks.

Fig. 4. Normalized MSE of channel estimation for static channel with
the QPSK constellation in SC-CP systems with different number of received
blocks.

5. CONCLUSIONS

In this paper, a new algorithm for blind channel estimation
in cyclic prefix (CP) systems is proposed based on repeated
use of remodulated received blocks applied in subspace (SS)
methods. An algorithm parameter called repetition index can
be chosen as any positive integer. Compared to a previously
reported method that also uses received blocks repeatedly, the
proposed algorithm not only has a greatly reduced compu-
tational complexity, but also has an improved channel esti-
mation performance when using the same repetition index.
When it is compared with a previously reported method that
uses remodulation only, the proposed method has a clear im-
provement on channel estimation performance at the expense
of a slightly increased computational complexity. The pro-
posed algorithm not only outperforms all previously reported
methods, but also requires less amount of received data than
all existing SS methods to yield the same channel estimation
performance. Although the algorithm presented in this paper
is based on single-input-single-output systems, the algorithm
can be readily extended to the MIMO case.
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