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ABSTRACT 
 

Active infrared thermography is a nondestructive method 
for evaluating defects in artworks. A conventional excitation 
radiation heats the sample and the photothermal response is 
recorded by an infrared (IR) camera. Classical pulsed 
excitation has shown the feasibility of such a detection 
system, but the energy deposition for a long period of time 
can alter samples. Random excitations can prevent such 
problem, but signal processing methods should be 
implemented to extract the useful information. We propose 
a processing method that combines Singular Value 
Decomposition (SVD) and Higher Order Statistics (HOS). 
The former decomposes the dataset in several subspaces, 
allowing to remove the influence of the acquisition 
environment and system. The latter is used to build up from 
the useful information one or two images for diagnostic. We 
show on a mural-type "laboratory" and on a in situ artwork 
that this method allows good identification of defects, 
providing a complementary detector to classical analysis. 
 

Index Terms— Active infrared thermography, Higher 
Order Statistics, Skewness, Kurtosis, Singular Value 
Decomposition, Subspace decomposition. 
 

1. INTRODUCTION 
 
Traditional assessment of defects is the manual inspection 
called "acoustic sounding". It is realized by tapping lightly 
with the fingers the artworks. The quality of diagnosis 
depends however on the capacity of perception and 
experience of the specialist [1]. 

Thermal properties of materials can provide quantitative 
information regarding the state of artworks. Active infrared 
(IR) thermography is one method that enabled 
nondestructive testing assessment of properties of materials. 
It has been used for example to establish microclimatic 
conditions inside churches in Rome [2], to observe the level 
of conservation and the impact of visitors on paintings after 
restoration [3], to study masonry structures [4], etc. Active 

IR thermography has been also proved as a reliable method 
for nondestructive evaluation of porous carbon fiber 
reinforced polymers or plastic [5,6] and for the investigation 
of art and historic artifacts [7]. In these recent applications, a 
step heating was used as excitation and the increase of 
surface temperature was recorded by an IR thermal camera. 
Measured signals (heating and/or decay) as a time response 
in each pixel, governed by physical processes (thermal 
conductivity, thermal diffusivity, etc.), were modeled in 
order to extract different parameters and hence to assess 
defects [6,7]. Another approach was to estimate Higher 
Order Statistics (HOS) from the recorded signals, in each 
pixel, in order to construct maps of the analyzed sample and 
use them for the detection of defects [5]. However, the HOS 
were estimated on exponential decay signals. Such 
estimation is not appropriate as signals represent realizations 
of non-stationary processes. For such signals, estimation of 
parameters represents a more direct way. 

The main disadvantage of the step heating method is that 
the energy is deposited for a continuous period of time, 
which may alter the artworks. Another solution is to use a 
Pseudo Random Binary Sequence (PRBS) excitation in 
order to deposit the same amount of energy, but randomly 
distributed over time. As processing method, the impulse 
response of the sample in each acquisition pixel is usually 
estimated (for example by correlation or parametric analyses 
[8,15]) and defects can thus be detected. This response 
includes heating and decay information, the processing 
being done during the application of the PRBS and not only 
heating or decay as in the step excitation case. 

The use of HOS is more straightforward for random 
signals, but in our application the recorded signals are 
strongly influenced by several factors: the mean response of 
the analyzed sample (usually a sum of exponential signals); 
the environment (relative position of camera versus sample 
and excitation sources, ambient temperature, etc.); the 
recording instrument, etc. Due to influence of these factors, 
a direct application of HOS may lead to improper 
interpretation. The Singular Value Decomposition (SVD) is 
a useful tool to perform a separation of the initial dataset in 
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complementary orthogonal subspaces by extracting 
decorrelated vectors [9,10]. It has been already used as an 
efficient preprocessing step to remove the ground response 
influence in the detection of anomalies in dikes [11,12].  

The goal of this paper is to present a signal processing 
scheme for nondestructive active infrared thermography. 
The SVD is used to remove the influence of useless factors. 
This operation allows exploiting the HOS of recorded 
signals as they can be interpreted as realizations of a 
stationary (supposed ergodic) random process. Applications 
on a mural-type "laboratory" and in situ artworks show that 
the use of PRBS excitations, combined with this processing 
scheme, allows a very good identification of defects. This 
result is complementary to the classical one obtained by 
pulsed excitation, the in-depth defects being detected. 

 
2. SYSTEM AND DATA DESCRIPTION 

 
The acquisition system created by the GRESPI laboratory is 
presented in Fig.1. It consists of two conventional radiative 
sources (halogen lamps), which are excited with a PRBS 
signal (top left).  
 
 
 
 

 
Figure 1: Data acquisition system. Top: excitation and sample of a 
recorded signal. Bottom right: recorded datacube D. 

The IR thermal camera records images (bottom right) of 
size Nx x Ny pixels, with an acquisition frequency of Fa Hz. 
Images are recorded during a time T, resulting in Nt = T⋅Fa 
samples per pixel. An example of a signal recorded in one 
pixel is presented in the top right of Fig.1. The recorded data 
is thus a datacube: 

[ ] [ ] [ ]N1,t,N1,y,N1, x   with   t)y,(x, tyx ∈∈∈D .
 (1) 

As we are not interested in this work in the relation 
between adjacent pixels, we can unfold the datacube into a 
matrix format, D(k,t), with k an index depending of x and y. 
A signal recorded in one pixel thus represents one row of D. 
 

3. SUBSPACE DECOMPOSITION BY SVD 
 
The Singular Value Decomposition (SVD) of the data 
matrix is defined as [9-11]: 
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where N = min{Nt, NxNy}, σi represent the singular values 
arranged in a descending order, while ui and vi are the left 
and right singular vectors. The vectors vi represent the 
temporal variations, while the vectors ui their variation in 
the image plane. 

The SVD can be used to separate the recorded data into 
orthogonal subspaces. In our case, the data matrix is 
affected by an energetic mean response of the analyzed 
sample (a sum of exponentials as illustrated in Fig. 1 for one 
recorded signal). This response depends on the acquisition 
pixel due to the configuration of the system and the 
environment (relative position of camera versus sample and 
excitation sources, ambient temperature, etc.). This 
information can be extracted by the most energetic 
subspace. Such kind of analysis has already been done in 
other applications, as for example the extraction of the 
ground response in the problem of leakage detection in 
dikes [12]. On the other hand, the recorded data is polluted 
by noise (electronics, etc.). As the noise is supposed white 
and uncorrelated, it is generally modeled by the least 
energetic subspace. The decomposition of the matrix data D 
in the corresponding subspaces is given by: 
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where: the subspace Dtrend constructed with the first more 
energetic m vectors models the mean response of sample 
and the environment; the subspace Dnoise constructed with 
the last N-n vectors characterizes the uncorrelated white 
noise; the useful information is spanned by the rest of 
vectors into the Duseful subspace. 
 

4. HOS AS DIAGNOSTIC TOOL  
 
Higher-order statistics (HOS) are descriptive measures of 
probability distributions and sample distributions [13,14]. 
These statistics have been already used in different 
applications for defining signal processing tools. For 
example, a criterion based on kurtosis was used to identify 
meteorological changes from temperature data recorded by 
optic fibers buried into the ground [11].  

In order to use HOS as processing tools, signals are 
supposed to be realizations of a stationary random process. 
This is not the case for this application because the recorded 
signals present an increasing trend due to the accumulation 
of energy by the sample, as illustrated in the upper right of 
Fig. 1. Interestingly, the high energetic signal subspace 
Dtrend estimates a mean trend of the response of the analyzed 
sample. This allows access to variations around this mean 
trend as the PRBS excitation is a random one. The useful 
information in the Duseful subspace can be interpreted as 
realizations of a stationary (supposed ergodic) random 
process. HOS can thus be estimated in each acquisition 
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pixel. The third and fourth order normalized statistics are 
considered here, namely the skewness κ3(k) and kurtosis 
κ4(k), “k” being the index depending of position (x,y):  
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where the 2nd, 3rd and 4th order cumulants should be 
estimated by using the unbiased estimators: the k-statistics 
[13,14], considering Duseful(k,t) as realizations, over t, of a 
stationary and ergodic random process. It should be 
mentioned that variances of skewness and kurtosis only 
depend on the number of elements used to estimate them, 
namely the number of time samples in our application. 
 

5. PROPOSED SCHEME 
 
The methodology adopted for the nondestructive 
investigation of artworks is now schematized. As a first step, 
the datacube D recorded by the IR thermal camera using a 
PRBS random excitation (see Fig. 1) is unfolded into a 
matrix format D.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Proposed scheme based on the SVD and HOS of IR 
response at PRBS random excitations for nondestructive 
investigation of artworks. 

As defects provide responses different of a normal area, 
their thermal signatures are not coherent and will not be 
revealed in the first few vectors obtained by SVD. On the 
other hand, the analyzed sample presents an increasing trend 
due to the accumulation of energy, which can be estimated 
by the first few SVD vectors. The noise related to the 
recording system (electronics, etc.) may provide a bias in 
the estimated HOS values. This noise can be removed by the 
last SVD vectors. The result of SVD is analyzed in terms of 
choice of the number of singular values, m and n, to be kept 
for constructing the useful subspace Duseful. The choice of 
these values is made on the basis of energies of the resulting 
subspaces, which are dependent on the recorded signals. 

HOS estimators are then computed on this subspace, 
allowing estimation of skewness and kurtosis values in each 
acquisition pixel. These values can then be reshaped in a 
matrix format indexed by the coordinates (x,y), providing 
two images for the diagnostic of artworks.  
Summarizing the above discussion, the proposed scheme for 
the nondestructive identification of defects in artworks is 
presented in Fig. 2. 
 

6. APPLICATION 
 
A partial replica of St. Christopher carrying the Christ 
Child, Florentine artwork of the late fourteenth century from 
the Campana collection of Louvre, was created in laboratory 
according to the technique of the Italian primitives [1]. This 
first artwork, shown in Fig. 3(a), was used to test the 
proposed scheme as nondestructive investigation method. 
Five defects illustrated in Fig. 3(b) were introduced during 
its manufacture: (A) is tilted with depth varying from 3 to 
10 mm; (B) is located at 5 mm depth; (C) and (D) at 3 mm, 
while (E) at 10 mm. Defects (C) and (D) are of same type, 
different from (A), (B), and (E) which are of another type. 
 
 
 
 
 
 
 
 
 
Figure 3: Replica of St. Christopher artwork (a); Defects 
introduced during its manufacture (b). 
 

Data acquisition was realized with the system presented 
in Fig.1. The halogen sources of 250 W were excited with a 
PRBS signal. The IR thermal camera was used to records 
images of size Nx = 240 x Ny = 320 pixels. The excitation 
and the IR thermal camera were synchronized, the total 
acquisition time being T = 256 seconds with an acquisition 
frequency of 1 Hz. However, the interesting area 
representing the St. Christopher replica being of 218 x 224 
pixels, only this information was considered. The raw 
datacube D is thereby of size 218 x 224 x 256, which gives 
after unfolding a data matrix D of size 48832 x 256.  

The SVD allows to decompose the data matrix D into 
N=256 singular vectors with no vanishing singular values. 
The ratio σ1/Σσi, with i=1..N, represents 93.5%, meaning 
that the first vector extracts a high energetic subspace. We 
can thus choose m=1 to construct the first subspace that 
models the mean response of the sample and the 
environment. In order to choose the value of n, we have 
arbitrarily imposed that the Duseful subspace shall represent 
half of the energy of the subspace obtained after the 
removing of the first one, meaning n=39. This value does 
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not substantially change the final result and should be 
properly estimated in future works on a large database. 

After identifying the high energetic signal subspace (m = 
1), mainly representing the trend of the response of the 
analyzed sample, as well as the noise subspace (n = 39), the 
Duseful subspace can thus be obtained using Eq. (3). This 
subspace contains the information related to defects and 
provides signals that can be interpreted as realizations of a 
stationary, supposed ergodic, random process. To illustrate 
this idea, Fig. 4(a) presents responses over time recorded by 
the IR camera in 1000 pixels chosen randomly (i.e. 1000 
lines of data matrix D). The vertical axis represents the 
temperatures. Fig. 4(b) shows the signals after removing the 
trend and the noise (i.e. the lines at same positions but from 
data matrix Duseful).  
 
 
 
 
 
 
 
 
 
Figure 4: Several responses over time recorded by the IR camera 
(a); Signals after removing trend and noise (b), which can be 
interpreted as realizations of a stationary process. 
 

Descriptive measures of these signals can thus be 
estimated by using HOS. Estimators of skewness and 
kurtosis were computed for each row “k” of the subspace 
Duseful. The estimation was done by employing k-statistics 
[14]. This means that the estimators are unbiased with 
variances only depending on the number of time samples, 
i.e. 0.023 for skewness and 0.092 for kurtosis.  

After reshaping these values in a matrix format indexed 
by the coordinates (x,y), the obtained results on this dataset 
are shown in Fig. 5.  

 
 
 
 
 
 
 
 
 
Figure 5: St. Christopher artwork, estimator of skewness (a) and 
kurtosis (b). Defects (C) and (D) of same depth and type are 
indicated by red arrows. The more in-depth defect (E) indicated by 
the black arrow changes the values of the skewness, imposing an 
important heterogeneity. Defects (A) and (B), of same type but 
different depths, are indicated by purple arrows in the kurtosis 
map. The defect (A), having a varying depth, imposes an 
interesting heterogeneity. 
 

The skewness identifies defects (C) and (D), indicated 
by red arrows, which are of same type and same depth. 
Interestingly, this measure presents heterogeneities, which 
could be related with the type of defects. For defect (D), it 
could be linked with the presence of a more in-depth defect 
(E) shown by the black arrow. This result is very interesting 
and has never been obtained before, as discussed thereafter 
in the comparison paragraph.  

The kurtosis identifies defects (A) and (B), shown by 
purple arrows, which are of same type and about same 
(average) depth. The defect (A) is tilted with depth varying 
from 3 to 10 mm, while (B) is located at a constant 5 mm 
depth. The defect (A) exhibits an interesting heterogeneity 
into the estimator of kurtosis, opening consideration for 
depth estimation of defects by the proposed scheme. 

We have chosen to compare these results with the ones 
obtained on the same artwork in previous studies but using 
“usual” methods. The Fig. 6(a) shows the IR image recorded 
160 seconds after the end of a step heating excitation. It 
represents the best result we can obtain with such kind of 
excitation, the intensities of the presented image being 
scaled to optimize the contrast [15]. Fig. 6(b) presents the 
result of a parametric analysis of the response to a PRBS 
excitation, as it was detailed in [15-17]. Presentation of 
these methods is outside the scope of this paper as well as 
the analysis of the influence of different parameters. What 
we are interested here is to compare at a glance the proposed 
scheme with usual analyses in the nondestructive 
investigation domain. An immediate observation is that the 
defects are better localized in both HOS measures. Another 
remark is that defects respond differently depending on their 
types, being highlighted by either the skewness or the 
kurtosis. The last is the presence of heterogeneities in the 
HOS estimators that could be used to quantify valuable 
information about the depth of defects. 

 
 

 
 
 
 
 
 
 
Figure 6: Defects estimation with other methods [15-17]: best 
contrasted image from an acquisition with a classical step heating 
excitation (a); results of a parametric analysis of the response to a 
PRBS excitation (b).  
 
The second analyzed artwork is the St. Martin of the church 
of Bonnet from the 19th century. This time we deal with in 
situ acquisition. Fig. 7(a) shows the acoustic sounding 
(finger tapping) analysis, manually realized by the 
specialist. Due to the limited place, we present only the 
kurtosis map, in Fig. 7(b), which has been estimated with 
the same processing scheme. More information and 
discussions can be found in [18]. 
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Figure 7: St Martin artwork, acoustic sounding analysis (a) and 
estimator of kurtosis (b). Kurtosis provided similar results to those 
obtained by acoustic analysis, being insensitive to pictorial layer. 
 
Fig. 7(b) shows that the kurtosis can identify the defects, 
except for the upper and left sides. This was also the case 
with other methods of signal processing, including the step 
excitation case, being probably related to the acquisition 
settings. With the proposed scheme and wising PRBS 
excitation, defects are precisely localized, the final result 
being insensitive to pictorial layer, which can be an 
advantage but also a disadvantage [18]. 
 

7. CONCLUSION AND PERSPECTIVES 
 
We have shown that the active IR thermography using a 
random PRBS excitation can be efficiently used for 
nondestructive investigation of artworks. In order to detect 
defects, we have proposed a processing scheme based on 
SVD and HOS. The decomposition of the raw data in 3 
subspaces allows identifying a high energy subspace, mainly 
representing the trend of the response of the analyzed 
sample, as well as the noise subspace. The SVD can thus be 
used to extract the useful information related with the 
defects, providing signals that can be interpreted as 
realizations of a stationary random process. These signals 
can be further analyzed by HOS tools, namely skewness and 
kurtosis. These tools are very efficient to localize the 
defects, the accuracy being better than the state of the art 
methods. Moreover, the in-depth defects can be highlighted 
by this method, inducing interesting heterogeneities in the 
values of the skewness. The proposed scheme also permits 
to distinguish between different types of defects and to open 
consideration for further work dealing with the depth 
estimation.  
Further work will also concern investigation of values of m 
and n in respect with parameters of the PRBS excitation 
(total time, amplitude, total energy, minimal energy of a 
pulse, etc.) as well as other methods to estimate and remove 
the trend or adaptation of methods insensitive to trend such 
as ICA-wavelet decomposition [19]. 
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