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ABSTRACT

In this paper, we present a Mean Shift algorithm that does
not require point correspondence to fit shape models. The ob-
served data and the shape model are represented as mixtures
of Gaussians. Using a Bayesian framework, we propose to
model the likelihood using the Euclidean distance between
the two Gaussian mixture density functions while the latent
variables are modelled with a Gaussian prior. We show the
performance of our MS algorithm for fitting a 2D hand model
and a 3D Morphable Model of faces to point clouds.

Index Terms— Mean Shift, Gaussian Mixture Models,
Morphable Models, Shape Fitting

1. INTRODUCTION

Shape models are obtained by statistically capturing the shape
variability from a set of training examples. Using Princi-
pal component analysis any shape in the class can be recon-
structed using a small set of parameters. Algorithms for fit-
ting shape models to a set of observations are often based
on a Bayesian decision framework and the parameters of the
model are estimated by maximizing its posterior probability
given a set of observations (input data). The likelihood is ex-
pressed as the joint probability of each correspondence pair
and this modeling assumes that the correspondences between
observations and points on the model are known. In practice,
however, it is difficult to get accurate correspondence to start
the fitting process (initial mismatches affect the robustness
and accuracy of the fitting algorithm).

In this paper we propose a Mean Shift algorithm that
globally fits the model to the observations (as point clouds)
without requiring point to point correspondences. The shape
model and the observations are represented as independent
mixtures of Gaussians and the likelihood is chosen propor-
tional to the Euclidean distance between the two density func-
tions. Our modelling does not require any kind of correspon-
dence between the two data sets. The only pre-processing
required is the affine alignment in between the two shapes
that is solved automatically by using our algorithm for robust
registration [1].
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2. RELATED WORK

Shape models have been widely used in computer vision
and medical image analysis for detection, reconstruction and
recognition of shapes. Cootes et al. [2] proposed the 2D
Active Shape Model which has been widely used for feature
detection and image segmentation. Blanz et al. [3] proposed a
3D Model of faces (a.k.a. The Morphable Model). The Mor-
phable Model has been used as a prior for inferring 3D faces
from a single image [4, 5] and also multiple-view images
[6, 7]. The parameters of the model are estimated by max-
imizing the posterior probability in a Bayesian framework.
The key problem for fitting a shape model is the need for
correspondence between the observation and the model itself.
For instance, the representation of a particular feature in the
observation (i.e tip of the nose) must be in correspondence
with the vertex representing the same feature in the Shape
Model. Registration methods such as the iterative closest
point (ICP) algorithm [8, 9, 10] have been proposed for solv-
ing the correspondence problem and the fitting process itself
[11]. However, those approaches are sensitive to outliers and
in practice, manual labelling to set initial correspondences is
often required [12].

Our main contribution in this paper is a new algorithm that
does not require correspondence for fitting a shape model to
a point cloud. It is also based on a Bayesian framework but
uses a robust likelihood [13] and a Gaussian prior (section
3.2). The resulting cost function can be optimised using a
dedicated Mean Shift (MS) algorithm (section 3.3). Conver-
gence of the MS algorithm to the global solution is improved
using an annealing strategy [14] and it is well suited for paral-
lel programming implementation [15]. We show experimen-
tally (section 4) how robust and accurate our algorithm is for
fitting a 2D hand model and a 3D Morphable Model of faces.

3. MEAN SHIFT FOR BAYESIAN SHAPE FITTING

3.1. Bayesian framework for model fitting

Let us define a shape model by its mean shape g and a set of
J eigenvectors {v;};=1, s associated with the eigenvalues
{0;};=1,..,s computed by Principal Component Analysis us-
ing a representative set of exemplar shapes. We assume any



shape from the same class can be well approximated as a lin-
ear combination of (p, {v;};=1,.. 7):

J
=p+D v, (1
j=1

The reconstructed shape y(«) depends on the latent pa-
rameters & = {o;}j=1, 7. Given a set of observations
U = {ug}r=1,.. n, we aim at estimating the parameters
{e};=1,..7 such that y(«) best fit the observations. Us-
ing a Bayesian framework the parameters are estimated by
maximising the posterior:

& = arg maxp(Z/{|a) p(a) )

with p(«) the prior and p(if|«) the likelihood. The prior is
chosen here as a multivariate Gaussian and it is expressed as
follows:
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The standard modelling of the likelihood corresponds to
first setting correspondences between a vertex of model
(e.g. yi(a)) and a vertex in the observations (e.g.u;) :
(w;,yi(a)),Vi = 1,--- ,m (m < n). Assuming inde-
pendence of the pairs, the standard likelihood is:

pla=(ug, -, upm)|e)
[ exp (e = vilel?
o< 11 exp (— 557 ) “)

Next, we propose to change this likelihood so that no corre-
spondences are required between the data sets.

3.2. Modelling a robust Likelihood

The observations U = {uy}x=1,... » and the model y(«) are
usually represented by vectors where the ordering of the ver-
tices matters. Moreover, if the observations have n vertices,
while the model is composed of m vertices comparing vectors
of different dimensions gets even more difficult. So instead
of representing the observations and the model by vectors, we
propose to represent them by density functions, f, and f,, of
a random variable x € RP (x has the same dimension as the
vertices of the model and the observations, i.e. D = 2 for 2D
shape models, D = 3 for 3D shape models). Loosely speak-
ing, f,, and f, can be understood as infinite dimensional vec-
tors and the likelihood can be expressed using the Euclidean
distance between those two density functions:

(|fu_fa||>2> (5)
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The Euclidean distance is here defined by:

1fu— ol = Jao (fulx) = fa(x))? dx

= Jep (fu(x)? = 2fu(x) fa(x) + fa(x)?)dx

(6)

This Euclidian distance alone is known to be robust to esti-

mate parameters [13]. Using equation (5) in equation (2), our
parameter estimation is formulated as:

d:argmin{—logp(f |fu) ~ Hfu_faH +Z2 2} %)

The variance o3 is set experimentally and allows us to control
the influence of the likelihood with the prior.

3.3. Mean Shift Algorithm for Gaussian Mixture

We model f,, (x) and f,(x) as a multi-Gaussian density func-
tion where each Gaussian kernel is centered on each point of
the data sets as follows:
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with D = dim(x). The Euclidean distance defined equation
(6) can be computed explicitly [1]:
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The estimate ¢ is then found by minimising E(«) defined by:
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where we introduce a parameter A to let the user control the
influence of the likelihood with the prior. The Mean Shift Al-
gorithm is then computed by differentiating the Energy func-
tion E with respect to « and equalling the results to zero.



Algorithm 1 Estimation of v

Input: aﬁ-o) = 0,Y4, hmin> Pmaz> €0, A = 0.05and § =

0.8
h = hmam
repeat
05 = || fu — fa||2
repeat
Compute A(a®) and b(a®) from eq. (12) and (13)
at+tl) — A(a(t))flb(a(t))
until [oHD) — )| < ¢,
h < Bh

until h < h,in

Starting from an initial guess o*), the update is computed by:
oD = A(a®)"Ib(a?) (11)

with A a J x J matrix defined as:

and L; ; defined by:
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The vector b is defined as:

b,(a) =2 i zn: E3(yi(a)ug) (uy, — yv(o))V,T,
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(yi(o),yp(e))
St (vi(0)
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13)
Note that when o; = 0, Vj, the model y(0) corresponds to
the average shape of the model . The MS algorithm is pre-
sented in algorithm 1 with its annealing strategy using the
bandwidth as temperature. In this paper all the kernels are
modelled using the same bandwidth h. Starting from a maxi-
mum value h,, .., the bandwidth is decreased using a geomet-
ric rate $ until the minimum value h,,,;,, is reached. Values
of 8 and A have been set to be the same for all experiments
in section 4 and a natural starting guess of the model shape is
y(0) = p (i.e. a; = 0,Vy). The Euclidean distance between
density functions (i.e. likelihood) has already been shown to
be more robust than the state of the art techniques for point
cloud registration [1, 16]. We show next experimentally how
the prior helps in making the estimation even more robust for
Morphable model fitting.
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4. EXPERIMENTAL RESULTS

In this section we report the results obtained when fitting a
2D model of a hand and the 3D Morphable model of faces
to synthetic and real data sets. The alignment between the
observation and the model in each experiment is done using
our algorithm for rigid registration [1].

4.1. Fitting a 2D hand Model to a point cloud

We compute the hand model from the annotated data sets of
18 hands provided by Tim Cootes'. We generated 100 ran-
dom shapes from the hand model using J = 10 eigenvectors.
Starting from an initial guess a(?) we achieve convergence
towards the right solution for all the target shapes (see fig-
ure la)). The same results are obtained when adding noise
to the observation sets demonstrating the robustness of the al-
gorithm to outliers (figure 1b). The use of the prior in our
modelling provides the information needed for preserving the
shape of the object during the optimization. When it is not
used (A = 0) the structure of the shape is lost and the algo-
rithm gets stuck in local solutions (Figure 1c) and d)).

Fig. 1. Results obtained when using synthetic hands gener-
ated from the model (a) and when adding random noise (b).
Figures (c) and (d) show the estimated shape when the prior
information is not considered in the algorithm (A = 0). In all
figures: observation (blue dots), initial guess (green dash) and
estimated solution (red line). Setting: hy,q = 50, hppin = 5.

In figure 2 we show our results when fitting the 2D hand
model to point clouds obtained from images. The number of
points on each observed hand are 2421 (top hand) and 2329
(bottom hand). The 2D hand model only contains 72 vertices.

Ihttp://personalpages.manchester.ac.uk/staff/
timothy.f.cootes/data/hand_data.html



(a) Color Image (b) Edge Map

d=5.89-10"*
(d) Results (A = 0)

d=3.71-10"*
(c) Results

Fig. 2. Hand model fitting to a point cloud obtained from 2D images. Column (a) and (b) show the colour image and edge map
used for the experiments. In column (c) the estimated hands (red dash) and in (d) the solution when the prior is not used in the
algorithm (A = 0). For the two experiments we compute the Euclidean distance d between the model and the observations.
When using the prior information the algorithm minimize the Euclidean distance better (results in ¢) than when the prior is not

used (d).

Since there is no need for one to one correspondence between
the data sets, all the observations are considered during opti-
mization. Figure 2 (column (c)) shows our estimated hands
(red dash) and the observations (blue dots). An additional
experiment was performed using the algorithm without prior
(figure 2 column (d)). In this case the algorithm does not con-
verge to the global solution and gets stuck in a local solution
that misrepresents the shape contained on the data set.

4.2. 3D Morphable Model fitting

In this section, we use the 3D shape Face Model® provided
by Basel University [17]. As a first experiment, we generate
synthetic faces by selecting random as. These synthetic faces
are used as observations (Target face) for which we know the
ground truth agr. Figure 3 shows an example of the conver-
gence of our algorithm towards the expected solution. In the
top row we have: target face, starting guess, result obtained
and the error plot between the target face and our estimated
face. At the bottom of figure 3, we show the estimated val-
ues for o (red diamond), the ground truth (blue line) and the
starting guess (green dash). As a second experiment, we
record 3D scans of faces (observations) with a Kinect sensor
(these new faces were not in the exemplars used to compute
the Basel Morphable model). First, the observation is aligned

’http://faces.cs.unibas.ch/bfm/.
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Fig. 3. 3D face fitting. Top row: observation (target), ini-
tial guess (starting), estimated face (result) and the error sur-
face in between the estimated and the target face. Bottom
row: parameters « corresponding to the estimated face (red
diamond), the ground truth (blue line) and the starting guess
(green dash). Setting used: A5y, = 2.5mm, hypgr = 1.5cm.

to the mean face [1]. Then the coefficients « are estimated.
The estimated reconstruction with our algorithm is shown in
figure 4 and compared to the reconstruction when using the



standard ICP algorithm for correspondence and modelling the
likelihood as the joint probability of each observation. Note
that manual labelling was required for using the ICP algo-
rithm while our algorithm is fully automatic. Error surfaces
computed between the estimates and the laser scan are also
shown in figure 4. The average error for the reconstructed
face using our method is 1.5mm with a standard deviation of
2.9mm which is comparable with results reported in litera-
ture [18].

10mm

Fig. 4. 3D Face Fitting to kinect data. Reconstruction using
the standard ICP-Newton algorithm (top left), our reconstruc-
tion (top middle), laser scan (top right), error surface between
ICP estimate and laser scan (bottom left), error surface be-
tween our estimate and laser scan (bottom middle) and the
observation captured using the Kinect (bottom right).

5. CONCLUSION

We have presented a Mean Shift Algorithm that globally fits
a shape model to a point cloud in a Bayesian framework. The
algorithm does not require any kind of correspondence be-
tween the model and the observation. The likelihood is de-
fined over the Euclidean distance between two density func-
tions modelled (as Multi-Gaussian) using the shape model
and the observation respectively. Results when using our MS
algorithm for fitting 2D and 3D models to real and synthetic
data are reported showing the applicability and robustness of
our algorithm.
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